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We give a systematic summary of the properties of the Gegenbauer functions CHx) and DHx) for general 
complex degree and order. with emphasis on the functions of the second kind. D 1 (x). and on results useful 
in scattering theory. The results presented include Sommerfeld-Watson type expansion formulas and two 
reciprocal addition formulas for the functions of the second kind. 

The analysis of Bethe-Salpeter wave functions and 
relativistic scattering amplitudes in terms of repre
sentations of the homogeneous Lorentz group has been 
considered by many authors 0 1 The most common 
approaches have involved either the use of the repre
sentation theory of the Lorentz group and expansions 
in the corresponding representation functions to simpli
fy dynamical calculations, or the use of the ideas of 
Fourier analysis on the Lorentz group to obtain repre
sentations of scattering amplitudes in different kine
matic regions. A more general approach based on the 
analytic properties of relativistic scattering amplitudes, 
and the expansion of the Cauchy denominators in fixed
energy dispersion relations using the representation 
functions of the Lorentz group, was developed by the 
present authorso 2 

The functions which appear in any of the foregoing 
approaches to relativistic scattering problems for spin
les particles are Gegenbauer (or hyper spherical) func
tions. Although the properties of the Gegenbauer poly
nomials Cn"(x) are well known and readily available, 3-6 

much less information is available in standard refer
ences about the Gegenbauer functions of the second kind, 
D:(x). The results obtained in ReL 2, especially those 
concerned with the connections between Lorentz and 
Regge expansions, depended on a number of detailed 
properties of the D:(x) which we found it necessary to 
work out for ourselveso In particular, we derived sev
eral remarkable addition formulas for the functions of 
the second kind and general Regge-like expansion for
mulas for the Cauchy denominator 0 

In the present paper, we have attempted to collect 
systematically most of the results on Gegenbauer func
tions which we found to be useful in our earlier work. 
Some of the results on addition and expansion formulas 
are new, as noted; others are known, but not readily 
available 0 Finally, for completeness, we have included 
some standard results, or generalizations of standard 
results. 

The present paper is divided into a number of short 
subsections which deal with particular properties of the 

1933 Journal of Mathematical Physics, Vol. 17, No. 11. November 1976 

Gegenbauer functions C:(x) and D>."(x) for general values 
of x, a, and x. Sections 1-5 deal with the definitions 
and elementary properties of the functions (integral 
representations, representations as hyper geometric 
functions, index symmetries, recurrence relations, 
reflection symmetries, and analytic properties). Sec
tion 6 deals with asymptotic properties of the functions 
for large degree and order, and contains some new 
relations. Section 7 deals with the expansion of the 
Cauchy denominator, and Secs. 8-10 with the addition 
formulas 0 The main expansion and addition formulas of 
Secs. 7-10 are restated for Legendre functions in 
Seco 110 Representative derivations of asymptotic lim
its of the Gegenbauer functions for large order and 
degree (Sec. 6) are given in Appendix Ao A detailed 
proof of one of the addition formulas of Seco 9 is given 
in Appendix Bo The rest of the results given in Secso 
6-10 can be established using similar methods, but 
detailed proofs are not giveno 

1. DEFINITIONS AND INTEGRAL REPRESENTATIONS 
The Gegenbauer functions C:(z) are defined as the 

solution of the differential equation [HTF 3 ·15 02 (2)]4 

{(Z2_ 1) ~2 +(2X+1)z :z -X(X+2a)}c:(z)=0, 

(10 1) 

which are regular at the singular point z == 1 0 The func
tions of general degree X and order a with Re(X + 2a) 
> 0 are given by the integral representation 

C:(Z)==(27Ti}-1 fcdtr>.-1(1-2zt+t2)"'" (102) 

== (27Ti}-1 exp(21Tia) fc dtt-A-1(t - zJ" au - z_l" a, 
(1 0 3) 

Re(X+2a»00 

Here z±==z± (Z2 _1)1/20 The arguments of z, (z -1), 
and (z + 1) are all restricted to the range (- 7T, 7T). In 
particular, (Z2 _ 1 )1/2 is cut from z:::: - 1 to z == + 10 
The contour C in Eqs. (10 2) and (1. 3) must enclose the 
origin in a counterclockwise sense and avoid the cuts 
of the integrand (see Fig. 1)0 The factor (1 - 2zt + t2)"" 
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FIG. ]. The contour C in the t plane is used in the integral 
representation of C~ (z), (1.3). The contour C. is used in the 
integral representation of D'f (z), (1.5). The phases of t, t - z., 
t - z_ above and below their respective cuts, are indicated in 
the figure. 

is to be interpreted everywhere as exp(27TiO'}(t - z.)"'" 
x (t - zJ" '" with 0 < arg(t - z,,) < 27T. 

For ReX < 0 and Re(X + 20') > 0, one can obtain an 
alternative integral representation for C~(z) by changing 
the contour integral in (1.2) to an integral along the 
negative real axis, and the replacing t by eB, 

C~(z) == - 2-'" _Tr_ dj3 exp[ - (x + 0')i3] sin X f ~ 
7T _~ 

x (coshj3 + z)""'. (1. 4) 

From this it is clear that C~(z) is analytic in the z plane 
cut from z = - 1 to z = - 00. The cut structure may also 
be deduced from (1. 3) by noting that the points z± pinch 
the integration contour in Fig. 1 for z - - 1, - 00. 

A second solution to Gegenbauer's equation can be 
obtained by choosing a different contour in the integral 
representation (1. 3). We choose a contour such that 
D~(z)-O for Izl-oo, Re(X+20'»0, and define D~(z) 
by7 

D~(z) = exp(27TiO' )(27Ti)-1 J dt ["A-1(t - z.)" "'(t - zJ""'. c. 
(1. 5) 

The contour C. is defined in Fig. 1. The singularities 
z± pinch the contour C+ for z - + 1, - 00; the function 
D~(z) is consequently cut from z = + 1 to z = - 00. For 
Rea < 1 and Re(x + 20') > 0, we can obtain an alternative 
representation for D~(z) which is analogous to (1,4), 

_ . sinTrO' 
Df(z)==2 "'exp(z1TO')--

7T 

x r~ dj3exp[-(X+a){3](cosh!3-z)""'. 
} cOSh-

1
• (1. 6) 

2. REPRESENTATIONS IN TERMS OF 
HYPERGEOMETRIC FUNCTIONS 

The integral representation for D~(z), (1. 5), is easily 
transformed into the standard integral representation 
for the hypergeometric function. One finds that 

0< . lz+(z2_1)1/2]-A-2"'r(X+2a) 
DA (z) = exp(l7TO') r(a)r(x + a + 1) 

( 
z_(z2_1)1/2\ 

x 2F 1 a,X+20';x+a+1; z+(z2_1)1/2) 

(2.1) 

. r(X+2a) [ ] 
==exp(l7Ta ) r(a)r(X+a+1)exp -(X +20')/3 
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x 2F 1(a, X +2a;X + a + 1;e-2B), 

z=coshi3, eB==z+(z2_1)1/2, leBI>I, 
(2.2) 

. r(x +2a) = exp(t1TO') (2Z)""-2'" 
r(a)r(x + a + 1) 

(2.3) 

_ 1 exp[2 '(a 1)J2-"'+1/2 r(x +2a) (Z2 _1)-"'/2+1/4 
- {1f 1TZ -.. r(a)r(x + 1) 

(2.4) 

In the last expression Q~(z) is the usual associated 
Legendre function of the second kind [HTF 3.2 (5)]. 
The asymptotic behavior of D~(z) as 1 z 1- oc is clear 
from (2.3). 

Hypergeometric expansions of Cf(z) are available in 
standard references, or can be derived from (1.3)3,4 
We quote only the expressions 

C"'()- r(X+20') ( . Ll.( » 
A z -r(X+1)r(20')2F1-X,X+20',a+z,21-z , 

I t(l - z) I '" 1, 

(2.5) 

=-!.sin7TX r(X+20')r\-X-a) lZ+(Z2_1)1/2]+2'" 
7T r 0' 

z+(z2_1)1/2=eB, leBI'" 1, (2.6) 

1. r(x + 2a)r(- X-a) (2 )-1.-20< 
=- ;Sln1TX r(a) z 

r(x + 0') A 

+ r(a)r(x + 1) (2z) 

X 2F 1(- tx, - tx + t;- X - a + 1;z-2), 

Iz I> 1, 

(2.7) 

_ =7T2-"'+1/2 r(x +20') (Z2 _1)-o</2+1/4p-<X+1/2 (z) 
-VTI r(a)r(x+l) 1..<>-1/2 , 

(2.8) 

where ~ is an associated Legendre function [HTF 
3.2(3)]. The expansion of C~(z) for Izl large may be 
obtained from (2. 7). 

The zeros and poles of Cf(z) and Df(z) as functions 
of X and a are readily deduced from the integral repre
sentations or the hyper geometric series (2.1) and 
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(2.5): 

D~ has poles for A + 20' = 0, - 1, - 2, ... , 

zeros for 0' =0, -1, - 2,···. 

C~ has poles for A +20' =0, -1, - 2,"', 

zeros for 0'=0, -1, - 2,"', 

(2.9) 

and zeros for A=-l, - 2,···. (2.10) 

For A =0,1,2,' ", C~(z) has no poles as a function of 
0'. 

3. SYMMETRY WITH RESPECT TO A AND 0' 

We can also obtain a number of useful symmetry 
properties of C~ and D~ from their hypergeometric 
expansions. From (2.5) and the properties of the gamma 
functions, it follows that 

C'" (z)=- sin1T~A+2a) C"'(z). 
-A-2'" sln1TA A (3.1) 

From (2.3) and (2.7), 

C~(.z) =exp(- i1Ta) . Si~1T~ ) [D~(z) - D"'X_2,,(Z)]. SIn1T 0' -
(3.2) 

It should be noted that the right-hand side of (3.2) does 
not vanish for A = integer. The product sin1TA D~(z) van
ishes, but from (2.3) one can see that sin1TA D~_2a(z) 
is nonzero. 

If we rewrite (2.3) for 0' - - 0' + 1, A - A + 20' - 1, 
and apply the Kummer transformation [HTF 2.9(2)] 

2Fl (a, b;c;z) = (1 - z)c-a-b 2Fl (c - a, c - b;c;z), (3.3) 

we obtain 

r(A + l)r(a) '" 
x r(A + 2a)r(- 0' + 1) D" (z), (3.4) 

while from (3.2) and (3.4) it follows that 

C-""l ( ) = 22"'-1( 2 _1)"'-1/2 r(a)r(A + 1) 
}"2"':1 z z r(- 0' +l)r(A +20') 

x{q(z) - 2 exp(- i1Ta) COS1Ta D~(z)}. (3.5) 

These results can be re-expressed as well-known 
properties of the Legendre functions by using (2.4) and 
(2.8). 

4. RECURRENCE RELATIONS 

The recurrence relations for the functions C~(z) are 
available from standard references (HTF 3.15.2): 

(A + l)C~'l (z) - 2(A + a)zC~(z) + (A + 2a - l)C~_l (z) = 0, 

(4.1) 

(4.2) 

2a (1 - Z2)C~:11(Z) = (A + 2a - l)C~l (z) - AZq(Z), (4.3) 
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'd 
- C"'(z) = 2aC""l(z) dz I< X-l' 

(4.4) 

:z [C~l (z) - C~l (z)] = 2(A + a)C~(z). (4.5) 

'The functions D~(z) defined by (1. 5) or (2.1)-(2.4) 
satisfy the same recurrence relations7 provided 
A;tO,-1,-2,···. 

5. REFLECTION SYMMETRY AND CUT STRUCTURE 

One can establish the following properties of C~(z) 
and D~(z) from the integral representations (1. 3) and 
(1. 5) or from the hypergeometric expansions in (2.3) 
and (2.5). 

Reflection symmetries, z - exp(± i1T)Z: 

C~[exp(± i1T)Z] = exp(± i1TA)C~(Z) 'F 2i exp( - i1Ta) 

xexp('F i1Ta) sin1TA D:(z), 

D),a[exp(± i1T)Z] = exp['F i1T(A + 2a)]D:(z). 

Discontinuities and relations on the cuts: 

C:(- x +iO) - C~(- x - iO) 

(5.1) 

(5.2) 

=2isin1TA{C~(x) - 2 exp(- i1Ta) COS1Ta D:(x)}, x> 1, 

(5.3) 

D:(- x + iO) - D~(- x - iO) = - 2i sin1T(A + 2a)D:(x), x> 1, 

(5.4) 

C~(x) = D~(x + iO) + exp(- 21Tia)D ... "'(x - iO), I x 1< 1. (5.5) 

In these expressions, z is an arbitrary complex num
ber on the first sheet of the z plane, while x is real. 
For a = 1/2, the relations reduce to those familiar in 
the case of the Legendre functions. 

We can use the foregoing relations to obtain an inte
gral representation for the functions D:(z) with integer 
degree. It is easily seen from (5.2) that the function 

(5.6) 

is cut only from z = - 1 to z = + 1. The discontinuity 
across this cut can be calculated using (5.5), 

n:(x + iO) - n:(x - iO) = (1 - X2)'l<-l/2 exp[i1T(a - t)]C:(x). 

(5.7) 

The function D~(z) can clearly be expressed as a con
tour integral using Cauchy's theorem, with a contour 
which consists of a clockwise circuit around the cut 
from z = - 1 to z = + 1, and a counterclockwise loop at 
00. The contribution from the latter vanishes for 
n?; ° lsee (2. 3)J. For Rea> - t, we can express the 
remaining integral in terms of the discontinuity func
tion (5.7), and obtain the desired representation, 

D"'(z) = exp(i1Ta)(z2 _ 1)"""1/2 ~ fl dt (1 - f)"-1/2C:(t) 
n 21T -1 Z - t ' 

n = 0, 1, 2, ... , Re a > - t. (5.8) 

In the special case a = t, this result reduces to a fami
liar expression for Qn(z) [cf. (2.4), (2.8)J. See also 
Ref. 3, (4.61.4), for the corresponding result for the 
more general case of Jacobi functions. 
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6. ASYMPTOTIC LIMITS FOR LARGE A AND a 

We shall frequently need the behavior of C~(z) and 
D~(z) for large values of one or both of the parameters, 
This behavior is easily obtained from the integral 
representations by saddle point methodso It can also be 
obtained in some cases by noting that the leading terms 
in the hypergeometric function 2F1(a, b;c;z) provide an 
asymptotic expansion of the function in inverse powers 
of c for Rec - 00 and 1 z 1 > 1 provided z does not lie on 
the interval 1 ~ z < 00 [RTF 203 02]. In the present sec
tion, we will simply collect the results which we will 
need later, and indicate the method of derivation of 
each. The saddle point calculations for two nonstandard 
limits [(6.1) and (6 010)] are sketched in Appendix A. 
The remaining saddle point calculations involve similar 
techniques, and the details will not be given. All of 
the asymptotic estimates presented are uniform for z 
and any free parameters (e. g., a in the case X - 00) 
in any fixed finite domains in the complex plane which 
exclude the points or regions indicated. We have not 
determined in most cases the most general conditions 
under which our results hold, but only that the range 
of validity is adequate for our purposes, 

The asymptotic behavior of C~(z) for 1 X 1- 00 along 
any ray in the right half X plane is considered in 
Appendix Ao Along rays such that Imx - ± 00, 

This result holds, as indicated, for all z not on the in
terval - 00 < z ~ 10 The derivation which leads to (6,1) 
must be altered somewhat for Rex - 00 with ImX fixed 
[see Appendix A or RTF 203.2 (17)], and one finds a 
result with the same form, but a quite different 
interpretation, 

This result holds for all z not on the intervals - 00 < z 
~ - 1 and 1 ~ z < 00 0 It should be modified for z on the in
terval 1 ~ z < 00 by omission of the second term (see 
Appendix A), We note in this connection that 

for all z in the complex z plane cut from - 1 to + 1 0 The 
equality is attained only for z on the cut. The second 
term in (6.2) is therefore exponentially small relative 
to the first term and can be dropped in any case for 
ReX - 00 provided z is a finite distance away from the 
interval [- 1,1]. 

A more detailed analysis shows that (6.1) and (6.2) 
are equivalent for all z a finite distance away from 
[- 1, 1] and all 1 X 1 - 00, ReX'" 0, provided only the domi-
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nant terms are retained. The interval l- 1,1] requires 
special treatment. The asymptotic behavior of C~(z) 
for ReX - - 00 can be determined by using the symmetry 
relation (3.1) in conjunction with (6.1) or (6.2). 

The asymptotic behavior of D~(z) for 1 X 1- 00 is quite 
simple [Appendix A or (5d) and RTF 3.2 (37), 2.3.2 
(16)], 

1 X 1- 00, 1 argx 1 < 1T, 1 arg(z ± 1) 1 < 17 . (6.3) 

The asymptotic behavior of C~_+~(z) for Ren - 00 can be 
obtained from the integral representation (1.3) using 
a saddle point estimate or, alternatively, by applying 
the Kummer transformation (3.3) to the hypergeometric 
function (2.5) and retaining only the leading term 
(HTF 2.3.2), 

c,,+n(z)=20:+n-1/2 r(x +2a +n) (z + 1)-0:-n+1/2 
~-n r(x _ n + 1)r(2a + 2n) 

_ sin17(n - X) 2-0:-n+1/2(Z + 1)-0:-"+1/2 
(n17)1/2 , 

Ren- oo ,larg(z+l)I<17· (6.4) 

The corresponding result for D~::(z) can be obtained 
either by saddle point methods, or from (5.1) and 
(6.4). Thus, we find from (5.1) that 

D~_+~(z) = ~expli1T(a + n)] . / ) sm17 X - n 

(6.5) 

Use of the asymptotic limit (6.4) then gives the limit 

D~_';,"(z) - 2- 0:-n-1/2( 17n)-1/2 expli17( a + n)] 

x {(z - 1)-0:-n+1/2 - expl± i17 

(a+x_~)](z+1)-0:-n+1/2}, 

Ren- oo , Imz50, larg(z±l)I<17. 

(6.6) 

The second term in this expression should be omitted 
for z on the interval 1 < z < 00. 

The asymptotic behavior of C~;:(z) for Ren - 00 can be 
obtained by using successively (3.5), (5,1), and (6.4L 
We find from (3 05) and (5.1) that 

C-"'+1 (z) = 220:-1(Z2 _1)"'-1/2 r(x + l)r(a) 
~+2"'-1 r(x +2a)r(- a +l)sin17X 

xexp[± i1T(a + ~)]{COS17[X + a]q(z) 

- cos17aC~[exp(± i1T)Z]}, Imz ~ 0, (6.7) 

If we now replace a in (6.7) by n - a + 1 and X by X + 2a 
- n - 1, and use the asymptotic limit in (6 04), we find 
that 
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C",-n(z) _ 2n-"'+1/2(1Tn)"1/2 sin1T(O' - n) 
~+n sin1T(X + 20' - n) 

x {cos1T(n - O')(z + l)n- ",+1 /2 + exp[± i1T(n - 0' + i)] 

Ren- oo , Imz~O, larg(z±l)I<1To (6.8) 

We will also need asymptotic estimates for the func
tions D.:"~+/(z) and C~+"'-I(Z) for I X 1- 00 with ReX?o 0 and 
the ratio Il/X 1« 1 and fixed. We obtain the estimate of 
D~~+I(z) by using (3.2) and whichever of (6.1) or (6.2) 
is appropriate. The results in the two cases have the 
same form, 

D.:"X.I(Z) - - exp[i1TO'](X _l)"'-12-"'(Z2 _1)""'/2[r(0') sin1T 

x (X-l+20')]-1 

x {sin1T(X _ 1 + 0' Hz + (Z2 _ 1)1 /2]~-1- '" 

- sin1TO' exp[± i1T(X - 1 + 0')] 

(6.9) 

where the ± in the phase factor in the second term 
corresponds either to Ixl-oo with ImX-=t=oo, 
larg(z-l)I<1T, or to ReX-oo, Imx fixed, Imz~O, de
pending on whether (6. 1) or (6.2) is used. (The results 
are, of course, equivalent when nonleading terms are 
dropped.) For ReX - 00 and I z + (Z2 - 1)1/21> 1, the 
second term in (6.9) should be dropped. 

Finally, the asymptotic estimate for ct/(z) is derived 
in Appendix A for the conditions we will need, 

C~-/( ) _ r(x) (2 )1 [2ztoJ -I [1 -ztoJ -AU-X) 

1 Z r(l+l)r(X-l) z x 1-1x ' 

(6.10) 

IXI-oo, ReX>O, x=l/X, Ixl<l and fixed, Izl»1. 

This result apparently cannot be derived directly from 
the hypergeometric representations of C~-l (z). 

7. EXPANSION OF THE CAUCHY DENOMINATOR 

The Gegenbauer polynomials C~(t) for n= 0,1,2, ..• 
form a complete set of eigenfunctions for the differen
tial equation (1.1).8 These polynomials are orthogonal 
on the interval -1~ t~ 1 with the weight (1- t2)"'-1/2, 
Rea> - i lHTF 3.15.1 (16)], 

f 1 dt(1 - f)"'-1/2C~(t)C:(t) 
-1 

-2- 2 "'+1 r(n+20') 
- 1T (n+0')r(n+1)[r(0')]2 0nm' (7.1) 

We may use the completeness and the orthogonality 
relations in conjunction with (5 0 8) to derive a standard 
generalization9 of Heine's expansion of the Cauchy 
denominator (z - t)-1 in terms of Legendre functions 
[HTF 3.10 (10)] 
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xE(n+O') ~~n++2~) C:(t)D:-(z). 

This expansion converges absolutely for 

I [t + (t2 _ 1)1/2]/ [z + (Z2 _ 1)1/2] I < 1, 

(7.2) 

(7.3) 

a result which can be established by using the asymp
totic limits (6.2) and (6.3) in (7.2). The restriction 
(7.3) requires that the point t lie within that ellipse in 
the complex t-plane with foci at t=± 1 which passes 
through the point t=z. The convergence is uniform for 
t on and within any ellipse with foci at ± 1 inside that 
determined by (6.9). This is, of course, the same 
region of convergence as one obtains for Heine's expan
sion lthe special case of (7.2) for 0' = i, see (2.4) and 
(2.8)], and the more general expansion of (z - t)-1 in a 
series of Jacobi functions. 9 

The series expansion of (z - 0-1 given in (7.2) does 
not converge in the region needed in our earlier work. 2 
We will therefore obtain an alternative expansion with 
a larger domain of convergence by using the Sommer
feld-Watson transformation1o on (7.2). We first replace 
t by - t in (7.2), and use (5.1) to write C~(- t) as 
(- 1)"C:(t). The sum in (7.2) can then be replaced by a 
contour integral, 10 

(7.4) 

f dv r(v+l) '" '" 
x -.- (v + 0') r( + 2 ) C" (t)D" (z), (7.5) 

Sln1TV V 0' 
c 

where the contour of integration runs around the posi
tive real axis in the negative sense (Fig. 2). It is easily 
established from (6.1)-(6.3) that the integrand van
ishes sufficiently rapidly for Ivl- oo , Rev?oO, that the 
contour of integration can be opened up to run parallel 
to the imaginary axis provided 

Imv 

FIG. 2. The locations of the poles of the integrand in (7.5) for 
ReCl'>O, and the contours of integration used in (7.5) (solid 
line) and (7. 7) (dashed line). The poles are located at v = 0, 
± I, ± 2,0", and at v=-2Cl'-n, n=O, I, 2, •••. 
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larglt + (t2 _1)1/2] 1 +Iarglz + (Z2 _1)1/2]1 <7T. 

Thus for all t and z which satisfy (7.6) 

_1_ = i exp(- i7Ta)2 2 ",-1 [r(a))2(z2 _ 1)"'-1/2 
z +t 

(7.6) 

f
i~-' dv r(v+1) '" '" 

x -.- (v+a) r( +2 ) C"(t)D"(z), 
Sln7TV v a 

.. ioo- E 

O<E<l, Rea>O. (7.7) 

In writing the result in this form, we have used the 
fact that C~(t) and D~(z) have no poles in the right-half 
v-plane for Rea> O. If Rea < 0, some of the poles of 
the integrand at v = - 2a - n, n = 0,1, .. " will lie in the 
right-half plane, and the sum of the residues of these 
poles must be added to (7.7). Note that the region of 
validity of (7.7) given in (7.6) is much larger than the 
elliptical region (7.3). 

8. GENERALIZATIONS OF STANDARD ADDITION 
FORMULAS 

The addition formulas for the Gegenbauer functions 
relate the functions of argument 

(8.1) 

or 

coshJ3 = coshJ31 coshJ32 - coscp sinhJ31 sinhJ32 

to sums of products of Gegenbauer functions with argu
ments xl> X2 , and z, or coshJ3l> coshJ32, and coscp. In 
this section and the following two sections, we will pre
sent some generalizations of the standard addition for
mula for the Gegenbauer polynomials [HTF 3.15.1 (19)] 
which hold for Gegenbauer functions of the first and 
second kind of arbitrary noninteger degree X. The 
ranges of the arguments xl> X 2, and z are also non
standard. Our method of derivation in each case is 
suggestive, but not rigorous as presented. The proofs 
that the results presented actually represent the func
tions in question are based in our approach on the use 
of Carlson's theorem. 11 However, the proofs are rather 
lengthy, and we will illustrate the method in only one 
case, the proof of Eq. (9.3) given in Appendix B. Al
ternative proofs of some of the results for the special 
case of the ordinary Legendre functions p~(n and Q~(n 
are available in standard references. 12 Henrici13 has 
given completely different proofs of the more general 
results in Eqs. (8.3), (8.6), and (9.5), a fact of which 
we were unaware at the time we derived these results 
for our own use. The "inverse" addition formulas in 
Eqs. (10.6) and (10 0 8) or (10.11) and (10.12) appear 
to be completely new 0 

The classical addition formula for the Gegenbauer 
polynomials of argument 

cose = cose 1 cose 2 - coscp sine1 sine2 

is given by HTF 3.15.1 (19), 

C"'( e)_r(2a-1) b( 1)nn r (1-n+1)r(a+n))2 
I cos - [r(a)]2 n=O - 4 r(l +2a +n) 
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1=0,1,," . (8.2) 

This result may be derived by group-theoretical meth
ods for 0' = m/2, m an integer, by using the relation 
of the Gegenbauer polynomials to the (unitary) repre
sentation coefficients for the rotation group SO(m + 2),14 
and can be extended to gene:r:al complex values of a by 
analytic continuation. It can also be proved by purely 
analytic methods. 15 The extension of (8.2) to complex 
angles, hence, to arbitrary values of xl> X 2 , and z is 
immediate provided n is an integer. 

The standard addition theorem for the Gegenbauer 
polynomials has an obvious extension to the functions 
of noninteger degree X, obtained formally by extending 
the summation in (8.2) to infinity, 

Cf(X1X2 - z(xi - 1)1/2(x~ _1)1/2) 

_r(2a-l) Z( 1)n 4nr (X-n+1)[r(a+n))2 
- [r(a)]2 n=O - r(x +20' +n) 

(8.3) 

For A = 1 = integer, this series terminates with the term 
n= 1 lsee (2.5) and (2.10)] and hence, reduces to the 
proper result for the Gegenbauer polynomials, 
1 = 0,1, .. '. The validity of (8.3) for general X can be 
established using this observation and Carlson's theo
rem. 11 We note also that (8.3) reduces for 0' = ~ to a 
known result for the Legendre functions Pl.(~) of 
arbitrary degree. 16 The general result has been given 
(for associated Legendre functions) by Henrici17 and 
Vilenkin. 18 

The region of convergence of (8.3) may be established 
through the use of (6.2) and (6.4). It is determined by the 
condition 

I z + (Z2 _1)1/21 < 1 (Xl + 1)(X2 + 1)/(x1 -1)(x2 -1) I, 

(8.4) 

where (z ± 1), (Xl ± 1), and (x2 ± 1) all have their princi
pal phases. This condition requires that z be inside the 
ellipse in the complex z plane with foci at ± 1 which 
passes through the point 

Z=(X1X2 +l)/[(xi -l)(x~ _1)]1/2. 

The latter gives the location of the branch point of 
C::'(~), ~ =X1X2 - z(xi _1)1/2(X~ _1)112, considered as a 
function of z, that is, the location of the singularity of 
C::'(~) closest to the interval [-1,1] (see Szego, Ref. 3, 
Theorem 9.1.1.). If we write Xi =coshJ3 i, where J3 i may 
be complex with IImJ3il<7Tandz=coshCP, IIm¢I<7T, 
the region of convergence corresponds to 

Itanh ~ tanh ~2 e-<I> 1<1. (8.5) 

We can easily derive an addition formula for the func
tion Df from (8.3). We take xl> x 2 , and z real, Xl> x2 

Durand, Fishbane, and Simmons 1938 



                                                                                                                                    

> 1, and combine the functions C~(~) and C:(eir~) for 
~ =X1X2 - z(xi _1)1/2(~ _1)1/2 using (5.1). The second 
function is related to the first by the replacement 
Xl - eirx 1 • After a little manipulation, we obtain the 
desired result, 

D~(X1X2 - z(xi - 1)1 12(X~ _ 1)1/2) 

r(2Q -1) 'E ( 1)" 4"r(A - n + l)[r(O' + n)]2 
= [r(O!)j2 "=0 - r(A +20! +n) 

x(2n+20' -l)(xi _1)"/2(x~ _1)"/2 

(8.6) 

Note that C~_~"(X2) vanishes when A - n= -1, - 2, ..• by 
(2.5), so that the apparent singularities due to 
r(A - n + 1) in (8.6) are not present. The addition theo
rem may be extended to t hat region of complex xl> X 2 , 

and z which is continuously connected with the real re
gion and in which the series converges. This region is 
easily established by using (6.1), (6.4), and (6.6), and 
is determined for Rex1 > ° by the condition 

I z + (z~ - 1)1/21 < I (Xl 'F 1 )(x2 + 1)/ (Xl ± 1 )(x2 _ 1) 11/2 • 

(8.7) 

This condition restricts z to the interior of the smaller 
of the two ellipses with foci at ± 1 which pass through 
the branch points of D:(~) at 

z=(x1x2±1)/[(xi-1)(x~-1)]1/2 • 

If we write xi=coshJ3 i, z=cosh</>, IlmJ3i l <7f, 
11m</> I < 7f, the series converges for 

\coth~tanh~2e-4>1<1, IImJ31 1<;-, IImJ32 1<7f. (8.8) 

9. ADDITION FORMULAS FOR tz t LARGE 

The second set of addition formulas which we will 
discuss are those which were necessary in our earlier 
work on Lorentz expansions of scattering amplitudes to 
express Lorentz amplitudes in terms of partial wave 
amplitudes, 2 As these addition formulas do not appear 
in the standard references 3-6, we will consider their 
derivation in some detail. An alternative derivation of 
(9.5) has been given by Henrici, 13 with the results ex
pressed in terms of associated Legendre functions. 

We begin with the classical addition formula for the 
Gegenbauer polynomials, (8.2). Since 1 is an integer, 
both sides of (8,2) are polynomials, and the addition 
formula is valid for arbitrary complex values of Xu X 2, 

and z, in particular, for values of z for which the con
dition (8.4) is violated (e. g., z - 00 with Xu x2 fixed), 
We will use the symmetry relation (5.1) to change the 
sign of the argument of C~W, C~(~) = (-l)IC~(- 0, and 
rewrite (8.2) (with 1 replaced by A) as 
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A=O, 1,···. 

We next use (3.2) to rewrite C:-1
/

2 (z) as 

C,,"1/2(Z) =exp[- i7f(O' _ 1.)] . sin7fn 
" 2 sm7f(n + 0' -1) 

(9.2) 

Note that for n an integer, sin7fnD:- 1 !2(z) vanishes, but 
the product sin7fnD:;_V';+l (z) does not. We therefore drop 
the terms which involve D:- 1

/
2 (z). In the remaining 

series, we make the substitution n = A - l, and formally 
allow the 1 sum to run from ° to 00. For A an integer, 
only the terms ° ~ 1 ~ A contribute. Note that we have 
chosen the direction of the summation, l- 00 rather 
than n- 00, to assure the convergence of the series for 
noninteger A. Finally, since we want to extend the re
sult to noninteger A, where the symmetry property 
(3.1) holds, we add to the remaining series an equiva
lent series with A replaced by - (A + 20'). [The added 
series vanishes for A an integer, since sin7fAD:;l+~ 2(Z) 
= ° in this case. ] After some rearrangement of the 
gamma functions, the resulting addition formula may be 
written in the form 

C:(z(xi _1)1/2(x~ _1)1/2 - X1X2) 

. . sin7fA r(20' - 1) 
=27ftexp(- t7fO') sin7f(A + 0') [r(O')j2 

{
f-(2 2 2l1)r(l+1)r(2A+20'+l+1) 

x ~ A+ 0'+ + [r(A+0'+l+1)]2 

x t (2A + 20' _ 2l- 1) r(l + l)r(- 2A - 20' + l2 + 1) 
1=0 [r(-A-O'+l+l)] 

X4~-/[(xi -l)(x~ _1)]<H)/2 

XC;+"-/(XJC~+('-/(X2)D~;_V,,2+1+l(Z)} • (9.3) 

The right-hand side of this equation (which we will 
denote by S~) is equal to C~ by construction for A 
=0,1,2,···. It is easily checked that it has the sym
metries (3.1) and (5.1) of C: for A - - A - 20' and for 
Xi - exp(± i7f)x i for arbitrary noninteger A, and has the 
asymptotic behavior (6. 1) of C:(~) for z - 00. It is 
therefore plausible that 5: is in fact equal to C~ for 
arbitrary complex A, that is, that (9.3) is a correct 
addition theorem. We will prove in Appendix B that this 
is the case. Our method consists of showing that the 
function 

G"= r(O')r(A+l) [t +(t2_1)1/2]-~[C"_S"] 
~ r (A + 20') <, <, ~ ~ 

is suitable for the application of Carlson's theorem, 
namely, that it is regular in the right-half A plane and 
bounded by exp[IAI(7f-E)], E>O, for IAI-oo, ReA"'-O. 
Since G: vanishes by construction for A = 0,1,2, ... , 
it vanishes identically by Carlson's theorem. We con-
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clude that C~=S~ for all A, 0', Xu X 2 , and z for which 
the series converges. 

The region of convergence of (9.3) is easily estab
lished by using the asymptotic estimates given in (6.2) 
and (6.8). The series converges absolutely for fixed 
Xl and x 2 and z such that 

Iz + (Z2 _1)1/21> 1 (Xl ± 1)(x2± 1)/(xl 'F 1)(x2'F 1) 11/ 2, 

larg(xl ±1)<1T, larg(x2±1)1<1T, larg(~±l)I<1T, 

(9.4) 

where all combinations of the signs in (Xl ± 1) and (x2 ± 1) 
are to be considered. This requires that z lie outside 
the larger of the ellipses with foci at ± 1 which pass 
through the branch points of D~(~) in the z plane, The 
convergence is uniform for z strictly outside the ellipse. 
For z real, z> 1, and the product [(Xl +1)(x2 +1)/ 
(Xl -1)(X2 -1)] real and positive, the convergence con
dition (9.4) becomes simply ~ > 1, the form used in 
Ref. 2, 

The addition formula for D:(~) which corresponds to 
(9. 3) can be obtained by using the connection between 
C~(~) and C~(e±;'O given in (5.1), If we take Xu X 2, 

and z real with ~ > 1, and combine the series for Cf(~) 
and C:(ei·O, with the second function being obtained 
from the first by the replacement Xl - ei·xu the series 
which involve D::)..-_12~2+I+l(Z) in (9.3) drop out. The series 
which involve D~:11+{2(Z) can be combined, and give the 
result that 

D~(z(xi - 1)1 /2(X~ _ 1)1/2 - X
1

X 2 ) 

. r(20' - 1) ;; ( ) 
= 21Tt [r(0')]2 fd 2A + 20< + 2l + 1 

r(Z + 1)r(2A + 20' + 1 + 1) 
x~~[r~(~A~+~0'~+~l~+~1~)]ro2---

(9.5) 

The addition formula (9.5) converges for complex 
Xu X 2 , and z such that conditions (9.4) are satisfied 
and is valid for arbitrary A and 0'. In the limit 0' -1 +, 
the function D~/2(~) = (i/ 1T)(J)..(~) appears on the left. The 
product r(2a -1)D~:~!12(Z) on the right approaches 
~(A + 1 + 1)"1[Z + (Z2 _1)1/2]+1-1, and (9.5) can be reduced 
to the classical addition formula for Q)'(O given by 
Heine. 12 An addition formula equivalent to (9.5) has been 
derived by HenricP3 using entirely different methods 
based on the differential equation for the biaxially sym
metric potential. Henrici's result extends the classical 
addition formula for Q),(~) to the case of general Q:(~), 
hence, by (2.4), to general D~(U [see Ref. 13, Eq. 
(89) ]. 

It remains for us at this point to demonstrate the 
validity of (9.5) for general complex A, Since the iden
tities which lead from (9.3) to (9.5) are valid for arbi
trary A and a, this demonstration is equivalent to the' 
proof of (9.3). This is given in Appendix B. 
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10. INVERSE ADDITION THEOREMS 

We turn finally to an entirely different class of addi
tion theorems. A special case was used in Ref. 2, 
namely, the expansion of the Legendre function 

Q (COShfl + coshfl1 COShfl2) 
J sinhfll sinhfl2 

in terms of the functions D~_l(coshfl). We will derive 
a corresponding addition formula here for an arbitrary 
D~. Let 

_ coshfl + coshfll coshfl2 
z - sinhfll sinhfl2 

(10.1) 

and 

(10.2) 

and rewrite the integral representation (5.8) for D;:(z), 
n an integer, in the form 

(z2_1)"-1/2Dn"(z)=21 exp(i1Ta)sinh{:Jlsinhfl2 {! dt 
1T wf-! 
(1- f)"-!/2 

x hfl , C;:(t). cos -
(10.3) 

We suppose for Simplicity that z is real and z> 1. Then 
(coshfl - ,) > O. We may then use (7.2) with a - a +} to 
expand the denominator, 

(coshfl - ,)"1 = exp( - i1T(a + 1)]22"+1[r(a + 1) F (sinhf3)2" 

~ 1 r(m+1) 
x~o (m+a+ z ) r(m+2a+1) 

and the addition theorem (8.2) to expand C:+ 1 / 2 (,), 

C~+l /2(t sinhfll sinhfl2 - coshfll coshfl2) 

=(_l)m r(2a) t(-l)1 r(m-l+1)[r(a+l+1)]2 
[r(a+1»)2 1=0 r(m+2a+l+1) 

(10.5) 

When we insert (10.4) and (10.5) into (10.3), the inte
gral on t can be evaluated by use of the orthogonality 
relations for the Gegenbauer polynomials, (7.1). The 
interchanges of the orders of summation and integration 
cause no problem. We are left with a sum in which 
the summation index runs from m = n to m = c<J. Upon 
changing the summation index to 1 = m - n and formally 
changing n to A, we obtain the desired addition 
theorem, 

r(Z+1)r(A+l+1) 
x 

r(A+2a+l+1)r(2A+2a+Z+1) 
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X C~''''+l I 2(cosh{31}C~''''+1 / 2(cosh{32) x DL I (cosh{3) , (10.10) 

where z is given by (10.1). 
x Df:,1 I 2(cosh{3), cosh{3 = z sinh{31 sinh{32 - coshi31 cosh{32_ 

(10.6) 

The derivation of (to. 6) given above holds only for 
A=0,1,2, .•.. However, the validity of the expansion 
for arbitrary A can be established by an argument using 
Carlson's theoreml1 similar to that given in connection 
with the addition formulas (9.3) and (9.5) (see Appendix 
B). The details add nothing new, and will not be given 
here. 

It only remains to establish the region of convergence 
for (10.6). From the known asymptotic behavior of the 
C and D functions, (6.1)-(6.3), one immediately finds 
that the series converges for 

(10.7) 

As this range of (3 is too restrictive for our previous 
applications,2 we again use the Sommerfeld-Watson 
transformation10 to obtain a result with a broader domain 
of validity. We begin in the region (10.7) in which the 
series converges, and suppose that ReA> - -j, Rea> 0 
so that the summand in (10.6), considered as a function 
of l, has no poles in the right-half I-plane. Application 
of the Sommerfeld-Watson transformation to (10.6) then 
gives 

r(A + 2a}r(2 a)[r(A + a + -j)]2 
X [r(a)j2r(A + 1) 

x --1-<+i'" dl 

-E- i~ sinlTl 

(2A + 2a + 21 + l)r(Z + l)r(A + 1 + 1) 
x r(A+20'+l+1)r(2;\.+20'+l+l) 

(10.8) 

The restrictions on the values of A and a can be elim
inated by deforming the integration contour to avoid 
the Singularities of the integrand which move into the 
right-half A-plane for general values of A, QI. The inte
gral is well-defined provided 

a result which follows from (6.1) and (6.3). This condi
tion places no restrictions on the relative magnitudes 
of the (3's if they are all real. This is the desired result. 
For the special case needed in Ref. 2, QI =~, (10.8) 
becomes an addition theorem for Q~(z), 

I
-Hi'" dl r(Z + 1) 

x -- :::~~--=--:-;::,-
sin1Tl r(2A + 1 + 2) 

-E- joe 
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If we use the definitions Xl = cosh{31' x2 = cosh/32, 
~=coshi3, (10.6) and (10.8) can be rewritten as 

(Z2 _ 1)",-1/2D:(z):= _ i22 .... 1 (xi _ 1)(x: _ 1 )]< .... 1) /2(e _ 1)0: 

r(A + 2(1)r(2Q1}[r(A + a + -j)]2 
X [r(QI}j2r(A+1) 

x t (-I}/(2A +2Q1 +21 + 1) 
1'0 

r(l +l}r(A + Z + I} 
x r(A + 2Q1 + l+ l)r(2A + 20' + l+ 1) 

~ =z(xf _1)1/2(~ _1)1/2 -X1X2 , (10.11) 

I~ +(e- 1)1/2j>jx1 +(xf_1)l/21Ix2+(~_1)1/2j, 

where all quantities have their principal phases, 
I arg(~ ± 1) I '" 'TT, I arg(x1 ± 1) I '" IT, larg(x2 ± 1)/ '" "'. 
Similarly, 

(Z2 _1)"'-1/2Di'(z)=22"'[(X~ -1)(~ _1)]<A,1)/2(~2 _I}'" 

r(A + 2(1)r(QI)[r(A + a + -j)]2 
x~--~[~r~(0'~)~J2~r~(;\.-+~1)~~ 

f
-E'i~ dl 

x -.-Z (2A+2Q1+21+1) 
-E-i~ SIn", 

r(l+I)r(A+l+1) 
x =r-r:(A-+"""'-2 0'--'-:+-:l""+-:1"")';;r""(2~A-+""'2""a""""'+"""l-"+-::1""') 

jarg[~ + (e _1)1/2] I + larg[x1 + (xf _ 1)1/2] j 

+ larg[x2 + (x: _1)1/2] 1< 1T. (10.12) 

The corresponding results for C:(z) may be obtained by 
USing (3.2). 

We note finally that if the integration contour in 
(10.12) is pushed to 00 in the left-half [-plane, the sum 
of the residues of the poles in that half-plane gives an 
addition formula for (Z2 _1)0:-1/2Di'(Z) which converges 
for 

I ~ + (e _1)1/21 <jx1 - (x2 _1)1/2/jX2 - (X:_1)1/21. 

(10.13) 

11. EXPANSION FORMULAS AND ADDITION 
FORMULAS FOR LEGENDRE FUNCTIONS 

The expanSion formulas and addition theorems for 
the Gegenbauer functions given in the preceding sec
tions can be converted through the use of (2.4) and 
(2.8) into equivalent results expressed in terms of 
associated Legendre functions. We will collect the 
most important of those results in this section. 
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The expansion formulas for the Cauchy denominator 
in terms of Gegenbauer functions given in (7,2) and 
(7.7) lead to the following expressions in terms of 
Legendre functions, 

(z - i)"1 = exp(- i1TJ-l) 

~ 

x~ (2n+21J- +1)(t2_1)-"/2 
"=0 

!

t+(f_1)1/ 2 \ 1 
z+(z2_1)172 < , 

(z + ttl = -2l exp( _ i1TlJ-) _._v_ 
. f i~-. d 

-i~"E Sln1TV 

larglt + (t2 _1)1/2]1 + larg[z + (Z2 _1)1/2] I <1T. 

(110 1) 

The result in (11. 2) gives a Regge-type expansion for 
the Cauchy denominator for arbitrary complex IJ
(complex helicity). 

The addition theorems given in (8.3) and (8.6) for the 
Gegenbauer functions of argument 

~ =X1X2 - z(xi _1)1/2(x~ _1)1/2 (11. 3) 

are generalizations of the classical addition formulas 
for the Legendre functions Pv(~) and Qv(U 19 to arbitrary 
v, IJ-, 

r(v+IJ-+1) ~(1)"( ) 
(t 2 _ 1),,/ 2 p"(t)=(21T)1/2 r ( 1) Li - n-IJ-
s v S V - J-l + "=0 

r(V-J-l +n+1)r(n-2J-l) 
x~r~(~v-+~IJ---_-n-+~l)~r~(n--+~l~) 

X(Z2 _1)"/2+1/4P::~!12/2(Z), 

Iz + (Z2 _1)1/21 <\ (Xl +1)(x2 +1) \1/2, 
(Xl - 1)(x2 -1) 

r(V-1J- +n+1)r(n-21J-) 
X---'-~--'------'-,---":"""--7-c'

rev + IJ- - n + l)r(n + 1) 

(11. 4) 

leads to the following addition formula for the 
Legendre function Q:U;), 

(t2_l)"/2Q"(1;)=_i(21T)1/2 C~S7TV r(v+1J- +1) 
v Sln1TV rev - ).l + 1) 

~ 

x6(-1)I(v+l+1) 
1=0 

x rev - J-l + 1 + l)r(- 2v - l- 1) 
r(v+1J- +l+2)r(l+1) 

X(Z2 _1)"/2+l/4Q::l1+~~2(z), 

I Z + (Z2 _ 1) 1 I 21 > \ (Xl ± 1 )(x2 ± 1) 11 /2. 
(Xl 'f 1)(x2 'f 1) 

(11. 7) 

A result for 1{:(!;) analogous to (9.3) can be obtained 
by using (2.8), (3.2), and (11.7). 

Finally, the addition formula for (Z2 _1)""1/2D~(z) 
given in (10.11) leads to a new addition formula for 
Q:(z), 

(Z2 _ 1)"" /2Q:(Z) = _ i(27T)1 I 2[(xi _ l)(x~ _ 1)1" I 2+1 14 

1=0 

x r(2v+l+2) p-v-1/2( ) 
r(l+l) v+I+1/2 Xl 

)( Pv-:i;//\ (X2)Q::lt.{~2W, (11. 8) 

1!;+(!;2_1)1/21>ix1 +(xi-1)1/2i IX2+(x~-1)1/21. 

The corresponding result for 1{:(z) can be obtained by 
using (2.8), (3.2), and (11. 8). 
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APPENDIX A 

1. Asymptotic behavior of D~ (z) and ~ (z) for 1\ 1-+00 

In the present section, we will derive the expressions 
(6.1)-(6.3) which give the asymptotic behavior of 
C~(z) and D~(z) for 1 A 1- 00 by using the method of 
steepest descents20 to estimate the leading contributions 
to the integrals (L 3) and (1, 5). The caSe of D~(z) is 
quite simple. From (1. 5), 

D~(z) =exp(21Tia)(21Ti)"1 J dt r~-l(t - zY"(t - zJ"" 
c+ 

= Ic+ expl1>(t)]dt, (AI) 

I Z + (Z2 _1)1/21 < \ (Xl 'f 1)(X2 + 1) \1/
2
. 

(Xl ± 1)(X2 - 1) 

(11. 5) where z± = z ± (Z2 - 1 )1/2, C. is the contour shown in 
Fig. 1, and 1>(/) is defined by (AI). The saddle points 
of the integrand are determined by the condition 1>'(t) 
= 0, and are located for 1 A I» I a I at the points 

The addition formula (9.5) for the Gegenbauer func
tion D~W of argument 

(11. 6) 
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(A2) 

The motion of the saddle points as argA increases 
from - 1T to 1T with I A I fixed is shown in Fig. 3. Only 
the saddle point t+ near z. is relevant for the asymptotic 
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FIG. 3. Motion of the saddle points in the integrand of ~l) or 
(A6) for I A I »1 as the phase of A changes from - rr to rr. The 
branch cuts of Fig. 1 have been rotated to run parallel to the 
lines argt=argz •. We take O! real for simplicity. 

estimation of D~(z) provided z is fixed a finite distance 
from 1, The path of steepest descent passes through 
t. in the direction determined by 

arg(t - tJ = rr/2 - argA + targO! + argz., (A3) 

The function </J (t) can be approximated for t - t. as 

</J(t) '" </J(tJ + t</J"(tJ(t - tJ +. , , . (A4) 

The contour of integration C. may be distorted to 
pass through t. in the direction of steepest descent as 
shown in Fig. 4. Evaluation of the remaining Gaussian 
integral then gives our asymptotic estimate (6.3) for 
D~(z) 

D~(z) -exp(irrO!)A "'-12-"'[r(0!)]-1(z2 _1)""'/2 

(A5) 

[A[-oO, [argA[<rr, [arg(z±1)[<rr. 

The asymptotic behavior of C~(z) for 1 A 1- 00 is some
what trickier to determine. We begin with the integral 
representation (1. 3), 

0 ~ 0 / • • 
z~ 

,.--11;. 
I , .... 
\ .,. .... 
\ z+..... """' ... '..... ..... ..... .... ..... .... ... 

~ ..... 

(a) (b) 

FIG. 4. Contours used in obtaining the asymptotic estimate 
(A5) for IYf(z) for I AI -00, I arg>..1 <rr. Only the regions near 
the saddle points (marked by x) give significant contributions. 
The locations of the saddle points are shown for 1m>..» 1, Re>.. 
=0, O! real. (a) The contour for Imz>O. (h) The contour for 
Imz < O. The contour is on the second sheet of (t - zJ ..... and is 
obtained by following z. and the contour of part (a) through the 
branch cut as Imz is decreased through zero. 
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C~(z) = (2rri)"1 Ie dt r>.-l(t - z.)""'(t - z_)"" 

= J e exp[</J(t)] dt, (A6) 

where the contour C is shown in Fig. 1. The location of 
the saddle points is again given by (A2), but both must 
now be considered, and the way in which the contour C 
may be distorted to pass through them is not uniquely 
determined. We will consider two cases which lead to 
(6.1) and (6.2). The, choice of contours for the first 
case is shown in Fig. 5. The contours in this case can 
be deformed continuously to pass through the saddle 
points as argz is increased from - rr + E to rr - E, with 
larg(z±1)I<rr-E, znoton[-1,1]. However, the con
tours are necessarily different for ImA> 0 and ImA < 0, 
and cannot be deformed into each other by varying 
ImA while continuing to pass through the saddle points. 
Estimation of the integrals by the method of steepest 
descents is straightforward, and one finds for this 
choice of contours that the asymptotic form of C~(z) is 
given by (6.1), 

C~(z) - A "'-12-"'[r(O!)]-1(z2 _1)-"'/2 

+exp(± irrO!)[z + (Z2 _1)1/2]->'-"'[1 + O(A-1)]}, 
(A7) 

[A[-oO, ReA~O, Im~-±oO, [arg(z±1)[<rr, 

Corresponding results for ReA"; 0 can be obtained by 
using (3.1) in conjunction with (A6). 

The result in (A 7) is apparently discontinuous across 
the positive real axis in A even though C~(z) has no such 

~ z-::....... -
(a) - ~ 

1m). >0 

zY;:; 
.. ~/ 

Z ( - \ 
I 

(el 

1m 1.<0 

FIG. 5. Contours used in obtaining the asymptotic estimates 
for C~(z) for I). 1- 00, 1m). - ± 00, given in (A 7). The locations 
of the saddle points are shown for lImA 1 »0, ReA = 0, O! real. 
(a) The contour for 1m>.. > 0, Imz> O. (h) The contour for ImA 
> 0, Imz< 0, obtained by continuously deforming (a) to follow 
the saddle point as Imz is decreased through zero. The dashed 
part of the contou r is on the second sheet of (t - zJ-"'. (e) The 
contour for 1m>.. < 0, Imz> O. Note that this cannot be obtained 
by continuously deforming (a) to follow the saddle points as 
1m>.. is decreased through zero (see Fig. 3 for the motion of 
the saddle points with arg>"). (d) The contour for ImA< 0, 
Imz< 0, obtained by deforming (c) as Imz is decreased through 
zero. 
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z~ z~ 
(0 ) (c) 

I~ 

(b) (d) 

1m Z >0 1m Z < 0 

FIG. 6. Contours used in obtaining Watson's asymptotic esti
mates for q (z) for I A I - 00, ReA?o 0, given in (AS). The loca
tions of the saddle points are shown for I ImA I »0, ReA = 0, 
01 real. (a) The contour for ImA> 0, Imz> O. (b) The contour 
for ImA< 0, Imz> 0, obtained by continuously deforming (a) to 
follow the saddle points as ImA is decreased through zero 
(see Fig. 3 for the motion of the saddle points with argA). 
(c) The contour for ImA>O, Imz< O. Note that this cannot be 
obtained by deforming (a) to follow the saddle points as Imz is 
decreased through zero. (d) The contour for ImA < 0, Imz < 0, 
obtained by continuous deformation of (c). 

discontinuity. Note, however, that I z + (Z2 _ 1)1/21 > 1 
for z not on the interval [-1,1]. This interval is ex
cluded for (A 7). Thus the second term in (A 7) is ex
ponentially small compared to the first term for ReA 
- 00, and should be neglected relative to the correc
tions to the first term, The apparent discontinuity is not 
significant, and the second term in (A 7) is relevant 
only for A-±i oo . 

We can obtain a different asymptotic estimate of 
C:'(z) which does not exhibit the apparent discontinuity 
in A by choosing the contours shown in Fig. 6. We must 
now distinguish between the cases Imz > ° and Imz < 0, 
but for a fixed sign of Imz can deform the contour for 
ImA > ° continuously into that for ImA < ° while contin
uing to pass through the (moving) saddle points. Eval
uation of the saddle point integrals is again straight
forward, and one finds that the asymptotic form of 
C:'(z) is given by (6,2), 

x{[z + (Z2 _1)1/2]1.+"[1 + 0(A-1)] 

+ exp(± i7TO')[Z + (Z2 _ 1)1/2]-1.-"[1 + 0(A-1)]}, 

(AS) 

IAI-oo, ReA?oO, Imz~O, larg(z±l)I<7T, 
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This result corresponds to that derived by Watson 
[HTF 2,3,2 (17)]. The expression in (AS) has an appar
ent discontinuity across the real z axis for z> 1 which 
is not present in C1'(z), However, for ReA-oo, the dis
continuity is exponentially small compared to the cor
rections to the leading term, and is not Significant, 
It is in fact easily checked that the leading (and only 
significant) terms in (A 7) and (AS) are identical for 
I A 1- 00 whatever combination of the conditions ImA'" ° is 
considered, We note finally that for z real, z> 1, and 
ReA - 00 with ImA fixed, the saddle point at t does not 
contribute, and the second terms in both (6,1) and (6.2) 
should be dropped, 

2. Asymptotic behavior of C A - I (z) for I A I ~ 00. 

vA I fixed I 

The proof the addition formula (9.3) given in Appendix 
B requires an asymptotic estimate of C~-I (z) for I A I 
- 00, ReA?o 0, with the ratio Il/A 1« 1 fixed, Thus III 
- 00 with I A I, The relevant limit is easily obtained by 
the method of steepest descents for I z I» 1. From (1.3), 

ctl(z) =exp[27Ti(A -l)(27Ti)-1 

x I dt t-l-l(t - zyhl(t - zJ-A+I, 
C 

The important saddle point is located at 

to = x/[z + [Z2 - x(2 - X)]1/2] "'x/2z, 

x=l/A, Ill»l, IAI»l, Izl»l, Ixl<L 

(A9) 

(A10) 

For x> ° and z real, this saddle point lies to the right 
of t=O, and the contour C should be distorted to run 
through to parallel to the imaginary axis (see Fig, 7a), 
For x < 0, a second saddle point appears from the 
second sheet in t, and there are saddle points both 
above and below the negative real axis, Both must be 
taken into accounL The situation for argz near 7T is 
shown in Fig. 7b, 

The results in the two cases (and intermediate cases) 
are easily shown to be identical if we properly identify 
some r functions which appear only in their asymptotic 
form. Thus, for x real, x> 0, a saddle point estimate 
of (A9) using the approximate value of to, to "'x/2z, 
with terms of order Z-2 dropped in the exponent, gives 

CA-I(Z)- _1_[X(1-x)J
l

/2 ~rl-1(1-2zt +~tA+1 
I v'21T A + 1 2z a a a 

• 
Z 

( 0) 

~ -- :\(-, .. 
(b) 

FIG. 7. The location of the saddle points and the contours used 
in obtaining the asymptotic estimate of C IN-I (z) given in (A14). 
We take z real. (a) The situation for x = I/A real and positive, 
x < 1. The second saddle point is on the second sheet in t-I , 

and does not contribute to the asymptotic expression. (b) The 
case for argx near 7T. The saddle points are at to on the first 
sheet, and at e-2d to on the second sheet. Both give important 
contributions to (A14). 
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'" ~ (2Z)1 exp{ - [(Z + ~)lnl- l] 

- [(A - 1- ~)ln(A - Z) - A + Z] 

+ [(A - ~)lnA - A]}. (All) 

The various terms in the exponential can be identified 
with r functions by using Stirling's formula, 

r(z) -..J2rr expl(z - ~)lnz - z], 

and we conclude that 

C~-I( ) r(A) (2 )1 
1 z - r(l+ l)r(A _ Z) z . 

(A12) 

(A13) 

A similar calculation in the case of two saddle points 
(Z-_oo, A-OO, Izl»l, x<O, Ixl<l) gives an identical 
result. Note that the zeros of C~-I (z) for A - Z = 0, - 1, 
- 2,'" and l= -1, - 2,," are given properly by this 
expression. 

The result in (A13) neglects some factors which are 
important for 1 Ar / z I;:: 1. A more careful calculation 
using the exact form of to gives the correct limit, 

~_I( ) r(A) (2 )1 ( 2ztO)-1 
C! z-r(l+l)r(A_l) z x 

(
1 _ zto) -~(l-x) 

X .-----r-1 ' 
- 2 X 

/A/-OO, ReA'" 0, x=l/Afixed, /x/<l, 

where to is given in (A10). 

APPENDIX B 

We will show in this Appendix that the series in 

(A14) 

(9.3) actually represents the function C~(O. Our proof 
will be based on Carlson's theorem. 11 For convenience, 
we will denote the series on the right-hand side of 
(9.3) by S~, 

''''( ) 2' (. ) sin17A r(2a-1) 
,)~ xl> x2 , Z = 171 exp - ma sin17(A + a) [r(a»)2 

x{?a (2A+2a+21+1) 

r(Z +l)r(2A +2a + 1 + 1) 
x [r(A+a+I+1)j2 

f(2 2 2l 1) r(l+1)r(-2A-2a+l+1) 
+ L.I A + a - - [r( . 1 1»)2 

!=o - A - a;- + 

x 4A- 1Uxi _ l)(x~ _ 1)]«-1) /2 

XC~''''-I(Xl}C~'''-I(X2)D:'~-_V;'1'1(Z)} . (B1) 

For A an integer, (Bl) reduces by construction to the 
addition formula (8.2) for Cno, ~ =z(xf _ 1)1/2(X~ _1)1/2 
- X l X 2• That formula has only a finite number of poly
nomial terms, and is valid for arbitrary xl' x2 , and z. 
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Thus, 

C~(~) - S~(xl> x 2 , z) == 0, A == 0,1,2, .. " (B2) 

Xl' x2 , z arbitrary. 

Carlson's theoremll states that a function irA) which 
is analytic in the right-half A-plane, bounded by 
exp[IAI(17-E)] for IAI-oo, ReA;' 0, and equal to zero 
for A=O, 1,2,"', is identically zero. Before we can 
apply this result to (B2), we will need to establish the 
asymptotic behavior of C~ and S~ for 1 A 1- co. However, 
from (6.1) and (6.2), 

C~(cosh{j) - A "'-12-"'[r( a )]-1 

x (sinhB)" "'{exp[(A + a)J3] 

+exp(±i17a )expl-(A+a)f.:ll), Re{.:l~O. (B3) 

Thus, C~(cosh{j) grows as exp(ARe{3) for A - 00, and is 
not suitable for the application of Carlson's theorem. 
We will therefore consider instead of lc~ - Sf] the 
function 

""'( h' h' h) r(O')r(A + 1) ( ) lJ~ cos Pl> cos P2 , cos cp == r(A + 20') exp - A{3 

xlC~(cosh{:J) - S~(cosh{:Jl> cosh{.:l2' coshcp)], (B4) 

where 

(B5) 

The ratio of r functions is introduced for convenience. 
We will assume that xl> x2 , and z are all real and in 
the range speCified by (9.4). The hyperbolic angles 
(:Jl' P2' and cp are then real. The theorem can later be 
extended to values of xl> x2 , and z throughout the re
gion of convergence of the expansion (9.3) by analytic 
continuation. 

It can be verified using (2.5) and (6.1) or (6.2) that 
the function 

r(a)r(A+l) ,'" 
r(A +2a) exp(- A{:J)C). (cosh{:J) 

is an entire function of A (and a) with the asymptotic 
form 

x{l + exp(± i17a) exp[- 2(A + a)f3J}, Re{3 ~ 0, (B6) 

and is therefore suitable for the application of Carlson's 
theorem for 1 1m,31 < 17/2. We will assume for conven
ience that Rea'" 0. The burden of the proof of the addi
tion theorem (9.3) for arbitrary A thus amounts simply 
to a demonstration that the function 5: is regular for 
ReA ~ 0, and is appropriately bounded for I A I - co, 

ReA;' 0. This will certainly be the case if S~ has (as it 
should) the same asymptotic form as C:(cosh{3). 
Carlson's theorem will then establish that C~cosh(3) is 
identical to the series S~ throughout the right-half A
plane, and by analytic continuation in A and a, through-
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out the common domain of analyticity of the two 
functions. 

It is easy to show that the function 

r(a)r(>.. + 1) 
r(>.. +2a) exp(- A{3)Sf 

has no singularities for finite>.. in the right-half A
plane. The functions Cjl.-"-l and C~+"-I in (B1) have no 
poles as functions of >.. (or 0) for 1 an integer. More
over, in the second series in (B1), the poles of 
r(- 2A - 20 + I + 1) for 2>.. + 2a an integer are cancelled 
either by zeros of C~+"-l, or by the zeros of lr(- X - 0 
+ l + 1) ]-2. The apparent poles introduced by the factor 
(simT(X + Q)]-1 are also absent. For X + 0 equal to an 
integer, the terms in the second series in (Bl) with 
1 < 2X + 2a are proportional to sin1T(A + 0). The remain
der of the series, l? 2x + 2u, cancels term by term 
with the first series in (B1), again introducing first 
order zeros at the poles of lsin1T(X + Q) ]-1. Finally, the 
poles of D::l!t2 (z) for (A + 2a + 1) a negative integer are 
eliminated by the factor lr(A+2Q)]-I, and the poles of 
D':;_1/';+I+l (z) for (- A + l) a negative integer are eliminated 
by the factor sin1Tx. 

The calculation necessary to establish the asymptotic 
form of S~ for 1 A 1- 00, ReX> 0, is somewhat lengthy, 
and we will only sketch the procedure, It is convenient 
as a first step to replace the sum in (B1) by a contour 
integral through the use of the Sommerfeld-Watson 
transformation. 10 The expression for Sf (or C~) then 
reads 

Sf(coshPl> coshp2' cosh¢) 

1 • sin1TA r(2a -1)/ dl 
== 2 exp(- t1TU) COS1T(X + a) [r(a)J2 sin1Tl 

c 

Imt 

L plane 
2A+Za 

• • • • 
X • • • • • • • 

Ret 

- X - 2a 

• • • • 

• • • • • • • • • 
- 2 X - 2a 

FIG. 8. The integration contour in the complex l plane for the 
integral representation (B7) for C~ (coshj3), with coshfi 
= (coshel> sinhi3t sinhfl2 - cosht:Jt cosht:J2)' The locations of the 
poles of the integrand for general values of A and O! are indi
cated by dots. The poles on a given line Iml = constant are 
separated by integer steps in Rel. Some of the poles disappear 
for integer values of A, A+20!, or 2A+20!. The location of the 
saddle point which yields the main contribution to the integral 
for II A I - 00, "', fit and ~ large, is indicated by a cross, 
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• 

• 

1mL 

t plane 

• • • • 

- X - 2a I ... / 
/ 

-"",-" 
/ 

/..,r 

/.( 

I • •• 
I -2X-2a 
'---~--, 

/' 

\ 
\ 
I 
I 

.......... 2X + 2a 
..... • • • • 

X \. 

• .) -_/ '" 

Ret 

• • • • • • 

FIG. 9. The contour which yields an integral representation 
for q (coshfi) with extended range of validity. 

X{(2A+2a+2l+1) r(l+1)lr(-A-o-l)]2 
r(-2A-20-Z) 

+ (_ 2A _ 2a + 21+ 1) r(Z + l)lr(X + a - l»)2 
r(2X + 20' - l) 

x(4 sinh PI sinh(2)1.-IC~+"-I(cosh/31) 

xCl.+a-l(coshl< )D a- 1 / 2 (COSh"-)} (B7) l 1--'2 -X-2a+l+l ,+" 

where we have rearranged some of the gamma func
tions. The integration contour is shown in Fig. B. 
The region of convergence of this representation is 
that given in (9.4L 

It is interesting to note that for 

lIm { ¢ - ln (tanh ~l tanh ~2) } \ < 7T, (BB) 

C~ can be written as the same integral multiplied by 
1/2, with the integration contour taken as that in Fig. 
9. The addition theorem which holds for the opposite 
sense of the inequality in (904) is obtained by pushing 
the contour in Fig. 9 to 00 in the left-half l-plane. 

The asymptotic form of .s~ for I A 1- 00 can now be 
estimated using the method of steepest descents to 
evaluate the integral. For ReA - 00, the term in (B 7) 
which involves the function D~:11+~2 is exponentially small 
compared to the term which involves D~;_12~2+1+1> and 
can be dropped [see (6.3)]. The relevant saddle point 
is that which occurs for l- exp(i7T)XX, x::; 1, I AX I» 1 
(see Fig" B). The integrand decreases exponentially in 
l as Rel increases from its value at the saddle point, 

Durand, Fishbane, and Simmons 1946 



                                                                                                                                    

We consequently require estimates of the remaining 
C and D functions for I A I and III large, Equation (6.9) 
gives an estimate of D~;_I/o<2+l+l (coshCP), If we assume that 
PI and i32 are large and that Il/A 1< 1, z» 1, then (6,10) 
gives the estimate required for C~+O<-/(cosh{:3L Upon com
bining terms, one finds that the integral which repre
sents S~ behaves for 1 in the neighborhood of the saddle 
point as 

x(e<l> sinh{:31 sinhj32)~ J~dlexp{(Cl' - ~)ln(A-l) 

- (2A +2a-l- ~)ln(2A -1) - (l +~)ln(-l) 

(B9) 

The integration contour is to be taken in the direction 
of steepest descent through the saddle point indicated 
in Fig. 8. The location of the saddle point can be ob
tained by careful expansion of the exponent in (B9) in 
powers of A. It is convenient in this calculation to 
assume that cP is large enough that 

I A 1-1 S 2 e- <I> coth/31 coth/32 « 1. 

The saddle point then occurs at l-exp(i1T)2Aexp(- CP) 
coth/31 coth{:32' The result of the calculation is as 
follows: 

S~ - r ~ Q) A 0<-1 exp{A lnl e<l> sinh/31 sinhp2 - 2cosh{:31 cosh{:32 

(B10) 

This is equal, within the accuracy of the approxima
tions, to the asymptotic form of C~(cosh{:3) for ReA 
-00,/3»1, 

(Bll) 

with coshp given by (B5). The consistency of the restric
tions on {:31> P2' cP, and the ratio Il/AI is easily checked. 

The case A - ± i 00 is slightly more complicated, as 
both terms in the asymptotic expression for D~~-_12~2+1+1> 
(6.9) must be taken into account. The term in (B7) 
which involves D~:t+{2 also contributes. However, the 
asymptotic behavior obtained for S~ is again consistent 
with that given for C~ in (B3). 

If we now combine C~ and S~ to obtain G~, (B4), and 
use the asymptotic limits for C~ and S~, we find that 
G~ is bounded for I A 1- 00, ReA ~ 0, by exp[ I A I (1T - E)], 
lImp I < 1T/2. Since G~ is also analytic in the right-half 

A-plane and vanishes for A=0,1,2,.·. by (B2), it is 
identically zero by Carlson's theorem. 11 Hence, 
C~(coshP) is the unique analytic continuation of S~, and 
the addition theorem is proved for PI> P2 , cp in the 
ranges implied by the foregoing restrictions. The result 
follows for arbitrary A, a, and Xl' X2, z throughout 
the region (9.4) by analytic continuation. 
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We consider the BBGKY equation for the single particle probability density in a hard sphere system. We 
investigate whether there is bifurcation from the fluid phase to functions which have crystalline symmetry. 
We find that as the density of the fluid increases from zero, there is bifurcation in one. two, and three 
dimensions. The bifurcation is shown to be characteristic of metastability and in general it does not occur 
at the equilibrium coexistence of two phases. The direction of branching and the stability of solutions near 
bifurcation is also discussed. 

1. INTRODUCTION 

We consider the integral equation 

h(x)- 1+ Iwlexp(-Jl(q)K(q)h(x)]. 
-- fw exp[- Jl(q)K(q)h(x)]dx 

for XE ill", where 

K(q)h(x) = (q/d)" ~YI"dl. h(x-y)dy, 

(1.1) 

and where w denotes the basic cell of some space lattice 
in ill". We seek solutions h of the Eq. (1. 1) which satisfy 
the condition 

i h(x)dx =0, (1. 2) 

and which have all of the symmetries of the lattice under 
consideration. As is discussed in Refs. 1 and 2, the 
Eqs. (1. 1) and (1. 2) are equivalent to the first equation 
of the BBGKY hierarchy for particles which interact 
like hard spheres of diameter d/q. The real number 
q is the ratio of characteristic length in the lattice to 
the diameter of the spheres. The value q = 1 corresponds 
to closest packing and increasing q corresponds to de
creasing the density. Indeed for any given lattice, q and 
the density p are related by 

p=c(1/dq)n, 

where only the constant c depends upon the lattice. The 
function Jl of q is related to the pressure P in the sys
tem. In fact there are constants {3 and K such that 

Jl(q) = (f3P/p -1) K, 

where P is the pressure and p is the density. We regard 
Jl as a known function of q. In Refs. 1 and 2, we take 
our information about 11 as a function of q from com
puter experiments (see Ref. 2 for references) which 
plot the pressure P as a function of p. (See Fig. 1.) 

The number h(x) + 1 determines the probability that 
there is a particle at x and (1. 2) is just a normaliza
tion. Clearly h '" 0 is a solution of (1. 1) and (1. 2) for 
all values of q and this represents the uniform fluid 
phase. The computer experiments give {3P/p and con
sequently 11 as a function of p for this phase. We show 
in two and three dimensions that as p is increased from 
zero towards the freezing density (i. e., q is decreased 
from + 00) a value p* of the density is reached at which 
a branch of crystalline solutions of (1. 1) and (1. 2) 
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bifurcates from the fluid curve. By crystalline solu
tions we mean functions h which satisfy (1. 1) and (1. 2) 
and have all of the symmetries of the lattice under con
sideration, but which are not constant. We associate 
the sites for particles with the maxima of h and consid
er only functions h which have exactly the number of 
maxima per unit cell corresponding to the sites in the 
lattice Which is considered. The value p* at which 
bifurcation occurs is always below the freezing density. 
The computer experiments also give results on crys
talline structures which exist well below the actual 
freezing density. These are the so-called metastable 
crystals and the experimental value of the density at 
which these crystals approach the fluid line is in close 
agreement with the value p* of the density at which we 
find bifurcation. In one dimension, there is no phase 
transition and {3p/p, and consequently Jl is known exact
ly as a function of p in the fluid phase. The relationship 
of the branching solutions to the results of the experi
ments is summarized in the discussion section. 

p 

Finally we relate our bifurcation analysis to the 

1······...-
·····1 

I 
I 
I 

~--------~I--~----~---P 
Pf Pm Pc 

FIG. 1. Schematic of hard sphere isotherm. pressure. p. 
versus density P. for two and three dimensions. The unbroken 
curve illustrates results from computer simulations and P"~ 
Pm. and Pc denote the freezing. melting. and closest-packing 
densities respectively. The dotted curve above Pf and below Pm 
denote the metastable fluid and crystal. respectively. See 
Ref. 2. 
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p 

FIG. 2. Schematic of hard sphere isotherm with bifurcation 
density, p*, and the Kirkwood instability density, p**. The 
dotted curve indicates pressure associated with the bifurcating 
solutions that have crystalline symmetries and the correct 
number of maxima per unit cell. Other quantities are as de
fined in Fig. 1. 

somewhat controversial "Kirkwood instability criteri
on. 3" It is our view that this criterion gives a lower 
bound for the densities at which bifurcation can occur 
without reference to a specific lattice structure and 
without the restriction that the function h should have 
maxima at (and only at) the lattice sites. That is, 
Kirkwood's criterion gives a density p** below which 
bifurcation cannot occur no matter what lattice is con
sidered. We claim that for any given lattice there is a 
density p* greater than p** at which bifurcation does 
occur. Furthermore the crystalline solutions which 
bifurcate at p* have particles at and only at the lattice 
sites. We believe that in two and three dimensions these 
branches of crystalline solutions coincide with the 
branches of metastable crystals below the freezing 
density found by the computer experiments. Thus by 
continuing these branches to the freezing density, they 
will meet the branch of stable crystalline solutions at 
that density. (See Fig. 2.) 

2. FORMULATION IN HILBERT SPACE 

In this section we reduce the problem discussed in 
the Introduction to an equation in an appropriate Hilbert 
space of periodic functions. Then, in Sec. 3, the 
bifurcation of nontrivial solutions of this equation is 
considered. In one dimension, the construction of the 
appropriate Hilbert space is simple and we do it direct
ly in Sec. 3. In two and three dimensions, there are 
many different space lattices. For definiteness and in 
order to compare our results with the computer experi
ments, we consider the square planar and hexagonal 
arrays in two dimensions and the face centered cubic 
array in three dimensions. In Refs. 1 and 2 we also 
consider the hexagonal close packing array in three 
dimensions. 

The real line is denoted by rn. and the integers by Z. 
Given a set {a j E: rn.n : 1 $;, j $;, n} of linearly indepdent 
points in rn.n , the set {L ~=1 k j aj : k j E: Z} is called the lat
tice with basic vectors {a j : 1 $;, j $;,n}. For a lattice L, 
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we denote by r(L) the full space group of L (i. e., the 
group generated by the translations, rotations, and 
reflections which leave L invariant). The basic cell 
w(L) in L is the set {LJn=1 {}j aJ: 0 $;, el j $;, 1 for 1 $;,j $;,n} 
and its volume is denoted by I w(L) I. 

We consider the following three lattices: L1 is the 
lattice in rn.2 which has basic vectors 

at =d(1, 0) and a~ =d(O, 1). 

This is the square planar array of closest packing for 
spheres of diameter d in two dimensions. L2 is the lat
tice in rn.2 which has basic vectors 

ai =d(1, 0) and ~ = (d/2)(1, v'3). 

This is the hexagonal close. packing array for spheres 
of diameter d in two dimensions. L3 is the lattice in 
rn.3 which has basic vectors 

a~ = ~ (1,1, 0), a~ = k (0,1,1), and a~ = k (1,0,1). 

This is the face centered cubic array for the closest 
packing of spheres of diameter d in three dimensions. 

For these lattices L 1, L 2, and L 3, let HI denote the 
complex Hilbert space of functions which are invariant 
under the translations in r(L I ). The inner product in 
Hi is given by 

1 1 -<;Z,g\ = I (L.) I h(x)g(x)dx for l,gE: HI' 
W, w(Lj) 

For a lattice L with basic vectors {aJ : 1 $;, j $;, n}, the 
reciprocal lattice L * is the lattice with basic vectors 
{A j : 1 $;, j < n}, where the A J are such that A J • a; = 21T51J 
for 1 $;, i, j < n (5;1 is the Kronecker delta). 

For GE: rn.n, we use tPG to denote the plane wave 
tPG(x) = exp(iG • x) for XE: rn.n• Clearly a plane wave tPG 
belongs to H; if and only if GE: L't. Furthermore, 
Bi ={tPG: GE: L't} is an orthogonal basis for Hi' 

For each q ?-1, we define a linear integral operator 
K(q) by 

K(q)h(x) = (r.Ld)n ( h(x-y)dy. J )y)"d/q 

Then we see that K(q) maps Hi into H; and that K(q) is 
a compact self-adjoint operator in HI (see Ref. 1, 
Appendix B). In fact, K(q)h(x) is a continuous function 
of x for each hE:Hi • Also K(q) is diagonal with respect 
to the basis B; and 

K(q)tPG(x)=(r.L)n ( exp(iG'(x-y»)dy 
d J)Y)Ed/q 

= "),,(q, G) exp(iG' x), 

where 

and 

2q . dlGI 
"),,(q, G) = diG I sm -q-

21Tq (dIGI) "),,(q, G)= dlGI J1 -q-

41Tq . (d I G I ) 
"),,(q, G) = diG I 11 -q-

if n=1, 

if n=2, 

if n=3, 
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where we use the standard notation for Bessel functions. 
Note that for fixed q, 'A(q, G) is real and depends only on 
IGI. Hence for fixedq, the spectrum of K(q) is the set 
of values of 'A(q, G) as G varies over the reciprocal lat
tice Lt and every eigenvalue [except 'A(q, 0)] has multi
plicity greater than one. To eliminate the degeneracy 
of these eigenvalues we pass to a real subspace of Hi 
which is invariant under K(q). Let Hi denote the real 
subspace of Hi consisting of all functions h in Hi which 
are real-valued and which are invariant under the full 
space group r(Hi ) and such that f..,(LI) h(x) dx = O. Then 
for GE Lt, if we consider the smallest value (say) iS l 
of I G I such that K(q) has an eigenfunction in Hi corre
sponding to the eigenvalue 'A(q, 151), we find that 'A(q, 15;) 
is an eigenvalue of multiplicity one of K(q) in the Hilbert 
space Hi' In fact, the only eigenfunction of K(q) is given 
by Z; CPG, where the summation is taken over all GE Lt 
such that I G 1= iS j • Note that Z; CPG is real-valued since 
I G I = I - G I. The actual value of is; for the various lat
tices is 

is 27T is _ ~ 0 _ V67T 
1=Y' 2-.f3d' 3- d ' 

and the corresponding symmetrized eigenfunctions are 
respectively 

and 

27TX 27Ty 
lP1(X,y)==cos-y +cos-y, 

lPZ(x,y)==cos ~7T (x+ k) +cos ~7T (x- A-) 
47T 

+ cos rn y, 
v3d 

'" .f27T lP3(X,y,Z)== L1 cos-
d 

(kx+ly+mz). 
k,l.m=*1 

We have introduced a real Hilbert space HI and con
sidered how the linear integral operator K(q) in (1. 1) 
acts in H;. Let us now show that the problem of finding 
solutions of (1. 1) and (1. 2) with all the symmetries of 
LI is equivalent to solving a nonlinear equation in HI' 

Let us define an operator NI by 

N (h )( )--1+ exp[-J.1.(q)K(q)h(x)] 
I ,q X - (exp[- J.1.(q)K(q)h(x)], 1)/ . 

From the properties of K(q), it follows that N; maps 
HlxJR into HI and that N j : H;xJR -HI is infinitely dif
ferentiable in the sense of Frechet. Solving the equation 

(2.1) 

is equivalent to solving (1. 1) and (1. 2) for functions h 
which have all of the symmetries of the lattice L j • Since 
K(q) maps integrable functions to continuous functions, 
solutions of (2.1) are smooth. 

Clearly N;(O,q)=O for all q. We now establish the 
bifurcation of a smooth curve of nontrivial solutions 
of (2.1) from this line of trivial solutions. For this we 
must consider the linearization of N j about h == O. Now 
the Frechet derivative of N; with respect to hat (O,q) 
is the linear operator 

- J.1.(q)K(q): HI -HI' 
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Bifurcation from the line of trivial solutions can take 
place only at values of q such that 1+ J.1. (q) K(q) is non
invertible where I denotes the identity. Note, however, 
that J.1. (q) K(q) does not depend linearly on q and so to 
establish bifurcation we must use the full generality of 
Theorem 1. 7 of Ref. 4 rather than the more widely 
known special case Theorem 2.1 on page 196 of Ref. 5 
which applies only to operators having a linearization 
of the form qK, where K is independent of q. 

3. BIFURCATION ANALYSIS 

For each lattice LI we have shown that there exists 
a positive constant iSl such that 'A(q, is l ) is a simple eigen
value of K(q): Hi -H/ for all q;;.1. Furthermore, the 
eigenfunction TI EH / of K(q) corresponding to 'A(q, 0/) is 
independent of q and has maxima at and only at the posi
tions where particles in the crystal are situated. 

Hence the operator 1+ J.1. (q) K(q) is noninvertible if and 
only if IJ. (q) 'A(q, G) + 1 == 0 for some G E L1\ {O}. Also, if 
lJ.(q) 'A(q, G) + 1 =0 for some G E Ll\{O}, then the kernel 
N(I + J.1. (q) K(q» of 1+ J.1. (q) K(q) is just the eigenspace of 
K(q) corresponding to 'A(q, G). Hence, considering K(q) 
as a map from HI into HI we have N(I + J.1. (q) K(q» 
== span {lPI} if and only if lJ.(q) 'A(q, ( 1) + 1 == O. 

Now IJ. is known as a function of p (and hence of q) 
from the computer experiments and 'A(q, 0/) is given in 
terms of Bessel functions in Sec. 2. In Ref. 2 we plot 
the curves IJ. (q) and - l/'A(q, 0/) and we find that these 
curves intersect at exactly one point qt > 1. The density 
pi corresponding to qt lies below the density at which 
freezing occurs. 

Theorem (bifurcation): For each lattice L/, there 
exists anE;> 0 and smooth mapsfl: (-Ej,EI)-HI and rl: 
(- Ej , Ej) -JR such that 

fl(a) =NI(fj(a), rj(a», 

a Z 
fl(a) = alP; + 2T H(O) + o(a Z) 

and 

Yj(a)=qi+aYt(0)+o(a) foraH aE(-Ej,EI ). 

Furthermore, in a neighborhood of (0, qf) in H, x JR, all 
of the solutions of (2.1) which do not lie on this curve 
{(fj(a), r;(a»: - El < a < E;} must be trivial solutions of 
the form (0, q). 

Proof: We shall apply Theorem 1. 7 of Ref. 4. Choose 
and fix i. Let X = Y=H, and let F: JRXX - Y be defined 
by P(q, h) = h - Ni (h, qt - q) where qt is the value of q 
such that J.1. (q) 'A(q, ( 1) + 1 = O. Clearly F has the proper
ties (a) and (b) of Theorem 1. 7 of Ref. 4. Also 
N(Fh(O, 0» =N(I + J..l (qj)K(qt» == span{lP;} and so is one
dimensional. Since K(q) is self-adjoint and compact, 
R(Fh(O,O» is the orthogonal complement of 
N(I+IJ.(q)K(q» inX=Y==Hj' Hence Y/R (Fh (0, 0» is also 
one-dimensional. Thus we see that F has property (e) 
of Theorem 1. 7 of Ref. 4. 

The conclusion of our theorem will be established 
provided that we demonstrate that F has the trans
versality property (d) of Theorem 1. 7 of Ref. 4. This 
is equivalent to showing that 

(lP;, Fok(O, 0) 1/11);"* 0 

H.J. Raveche and C.A. Stuart 1951 



                                                                                                                                    

and this in turn is equivalent to showing that 

(1fi;, a~jJ.(q)K(q)1fi;);*O at q=qt. 

But 

and so the transversality condition is that 

That is, our condition for branching is that when we 
plot jJ. (q) X(q) as a function of q, jJ. (q) X(q) should have 
nonzero slope at q =qt. We find that this is the case 
for the values of jJ.(q) given by the computer experi
ments. This completes the proof of the theorem. In
deed, since the requirement that (d/dq)(jJ.(q) X(q)* 0 
at q =qi is a generic property of curves jJ.(q) X(q), and 
since jJ.(q) is determined by experiment, we may al
ways assume that F has the transversality property (d) 
of Theorem 1. 7 of Ref. 4. 

Remarks: 1. For all sufficiently small values of a, 
the function/;(a) has exactly the same number of maxi
ma of 1fi;. Maxima of/;(a) are associated with the sites 
of particles in the crystal described by II(a) and the 
eigenfunction has the correct number of maxima occurs 
correct number of particles for the structure being 
considered. 

2. To find the values of q (equivalently p) at which 
1+ jJ. (q) K(q) is noninvertible we must solve the equation 
jJ.(q) X(q, G) + 1 = O. Writing q in terms of the density p 
and considering G as the Fourier transform variable 
in Kirkwood's discussion, this is exactly the equation 
on which the Kirkwood instability analysis is based. 3 

3. In one dimension, jJ.(q) can be expressed explicitly 
as a function of q instead of being determined by experi
ment as in two and three dimensions, In one dimenSion, 

But in one dimenSion, H is just the Hilbert space of 
functions h of period d such that Jg h(x) dx = O. The points 
G in the reciprocal lattice are G=2rrk/d, where k is an 
integer. Hence the eigenvalue X(q, G) of K(q) whose 
eigenfunction has the correct number of maxima occurs 
when k=± 1. Thus, 

x (q, ~rr) = ~ sin !rr 

and the corresponding eigenfunction is cos2rrx/d. The 
equation 

jJ.(qP.(q, ~rr)+1=0 
then becomes 

q . 2rr 1 0 -( --1) Sln- + = rrq- q 

and it is easily seen that this equation has only the 
solution q = 1. 432 in the region q> 1. It is also easily 
checked that 
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d (q . 2rr) 
dq rr(q _ 1) sm q * 0 

at q = 1. 432. Thus there is bifurcation of metastable or 
unstable crystalline solutions from the fluid curve at 
q = 1. 432. 

4. As in Appendix C of Ref. 1, the direction of 
branching of the curve of crystalline solutions can be 
determined by calculating the coefficients of Cl in the 
power series expansion for )';(a) about a = O. Differen
tiating/;(a)=N;{j;(a),)';(a» with respect to a, setting 
a equal to zero, and taking the inner product with 1fi; 
yields 

(1fi~, 1fi;\ _ 2 '( *) X( * 0) 2 (*) '(0) a X( * 0) (;PI> 1fi1)1 - jJ. q; q;,; + jJ. q;)'; oq q;,; 

and so 

)'HO) = X(qi, 0;) ( 2 ~~ (qi, 0;)) -1 (2jJ. '(qt) X(qi, 0) 

(1fiL 1fii)i) 
- (1fi;,1fiI ); • 

In one dimenSion, the right-hand side of this expression 
can be calculated exactly because jJ. is known exactly. 
In two and three dimensions, jJ.'(qi) must be estimated 
from the computer experiments. A similar procedure 
determines all of the subsequent coefficients. 

5. The expression 

A(h,q) =- (In(h + 1),h + 1); 

is well defined for solutions of (1. 1) since h is a contin
uous function of x and h(x) > -1 for all x. A(h,q) rep
resents the entropy of the system. Thus the quantity 
A(f;(a),)';(a», for a in a neighborhood of zero, corre
sponds to the entropy on the branch of crystalline solu
tions which bifurcates at pi. Differentiating B (a) 
=A(f;(a), )';(a» with respect to a and setting a equal 
to zero we obtain 

B(O) = 0, 

B'(O) = 0, since (1fi;, 1) = 0 and IHO) = 1fi;, 

and 

B"(O) = - (1fiI , 1fi1); since 11(0) E HI' 

Hence A(f;(01), )';(a» = -111fi;II~a2 + 0(01 3
) in a neighbor

hood of the bifurcation point pi. By our normalization, 
the entropy of the fluid phase is zero and so we see that 
the crystalline solutions on the branch bifurcating at 
pi have a lower entropy than the fluid solution. This 
means that close to the branch point the crystalline 
solutions are at best metastable with respect to the uni
form fluid phase. 

The expression 

G(h, q) = (In(h + 1), h + 1); + ijJ.(q)(K(q) h, h\ 

can be associated with the free energy of the system. 
Thus the quantity G{j;(01), )';(a), for a in a neighbor
hood of zero, represents the free energy on the branch 
of crystalline solutions bifurcating at pi. The coef
ficients in the power series expansion of G(f;(a), )';(a)) 
about a = 0 can be determined as in Appendix D of Ref. 
1. We find that 
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p 

FIG. 3. Schematic of hard sphere isotherm with dotted curve 
representing the metastable extension of the equilibrium crys
talline phase. The extension appears to intersect the fluid por
tion of the isotherm at a density very close to the bifurcation 
density, p* predicted by the analyses. See Ref. 2. 

G(f;(O'), 'Y;(a» = ~O'3 + 0(0'4). 

As for the direction of branching in Remark 4, the coef
ficient ~ can be determined from the derivative of X and 
J.I. at q =qt. 

6. Some comments about a similar analysis for inter
particle potentials other than the hard sphere case are 
given in Refs. 1 and 2. 

4. DISCUSSION 

In two and three dimensions, the computer experi
ments show that for a system of hard spheres the plot 
of pressure P against density p is that shown by the 
unbroken curve in Fig. 1. The experiments also show 
that the fluid curve can be extended above the freezing 
density and that the solid curve can be extended below 
the melting density. The pressure for these metastable 
states is indicated by the dotted curves in Fig. 1. We 
show (for various lattices) that there is a density p* 
below the freezing density at which solutions with the 
appropriate symmetries for crystals bifurcate from the 
fluid curve. The pressure for the solutions on the 
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branch bifurcating at p* is represented by the dotted line 
in Fig. 2. We believe that this curve joins the pressure 
curve for the metastable solids predicted by the com
puter experiments as shown in Fig. 3. Indeed, the 
pressure curves for the metastable solids given by the 
computer experiments do appear to join the pres-
sure curve for the fluid at a value of the density close 
to our bifurcation point p*. Consequently we believe that 
by continuing the branch of crystalline solutions away 
from the bifurcation point to higher density it will meet 
the curve of stable crystalline solutions at the freezing 
density as in Fig. 3. 

Since bifurcation does not occur at the phase transi
tion, but instead at the limit of metastability, its 
occurrence in hard rods, where the fluid phase is the 
only equilibrium state of the infinite system, is not 
surprising. We believe that if the branch of crystalline 
solutions were to be continued away from the bifurca
tion point to higher densities, the branch would never 
become staQle. It is, however, of interest to further in
vestigate this branch of solutions. If the lifetimes of 
crystalline arrays away from the bifurcation point are 
long compared to the time between collisions, then the 
one-dimensional case could, because of its simplicity, 
be useful in the study of metastability. 
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We show that an exact dispersion relation can be obtained for a cubic lattice made of spherically
symmetric attractive potentials. This result is obtained in a limit case where the potentials have zero range 
and infinite intensity. 

I. INTRODUCTION 

The Kronig- Penney model! has been extensively used 
as a first approximation which provides the main fea
tures of the band structure of periodic systems. Al
though this model has only been exactly solved in one 
dimension, its results are exhibited in reference text
books2 as an illustration of some general property of 
solids, such as energy gaps, crystal effective mass, 
etc. It has also been employed as a guide to check the 
accuracy of certain approximations which are, in fact, 
intended for application in three-dimensional problems. 
Since the solution for spatially-periodic potentials has 
proved in general to be very difficult, it would be inter
esting to have, at least, one exactly soluble periodic 
problem in three dimensions provided that this potential, 
even of a highly idealized type, is still flexible enough 
to help in the calculation and understanding of three
dimensional band structures. 

The aim of this paper is to introduce a class of po
tentials which leads to such exact solutions. 

Let us consider first the case of a one-dimensional 
(1-d) periodic chain of delta functions. This problem 
has some features in common with the 3-d potential 
considered in this paper, and is useful for the better 
understanding of the techniques employed in the future 
calculations. 

We then have 
~ 

V(x) =:0 Vn(x) Vn(x) = Vo a6(x - na) 
"::_00 

with the Bloch functions 

1/ikC'C) = Jlk(X) exp(i!?x) , 

(1) 

(2) 

where Jlk(X) has the same period a of the potential (1). 
If we substitute the Fourier expansions 

Jl.(x) = ~ C(q, k) exp(iqx), (3) 
• 

and 

V(x) Jlk(X) =6 B(q, k) exp(iqx), q = (27T/a)m, 
• 111 = 0, ± 1, ± 2 ... , (4) 

with 

B(q,k)=(l/a) ["/2 Jlk(X) V(x)dx= Vo Jlk(na), 
. _a /2 

(5) 

into Schrodinger's equation, we get 

~ {[(li 2 /2m )(q + k)2 - E] C(q, k) + B(q, k)} exp[i(q + k) j x = O. 
Q (6) 

or 
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C(q, k) = - B(q, k)/[(li 2/2m)(q + k)2 - Ej, (7) 

provided that the denominator of (7) does not vanish. 
If (li 2 /2m) (q + k)2 = E, we must have, from (6) and (5), 
Jlk(na) = O. This corresponds to a particular solution in 
which the particle does not "see" the potential and must 
therefore obey a free-particle dispersion relation. 
Since we are interested only in wavefunctions resulting 
from reflection and transmission at x = na, n = 0, ± 1, ... 
we shall disregard those frequencies entirely. 

Summing both members of (7) with respect to q, we 
get from (3) and (5) 

6 C(q, k) = Jlk(O) 
• 

or finally 
li 2 ~ 1 

- 2 2 = 6 (n + 1<')2 _ E' , mVoa n=_® 
(9) 

where 1<' = ka/27T and E' = 2mEa/li2. 

The summation indicated in (9) can be readily 
performed, 

t 1 t (7T cot(7TZ) ) (10) 
n=_~ (n + k')2 _ E = /=1 Res (z + k')2 - E) ,='!' 

where Zl 2 = - k' ± IE', E' '> 0, and Zl 2 = - 7/ ± i( I E' 1)1/2, 
E' < 0. F'rom (10) we obtain the well~known results3 

E '> 0, 

or 

cosh(ka) = COShxk + B sinhxk/xk , E < 0, 

where xk = (2111Ea2)1 /2/112 and B = 1Il Vu a2 /112. 

Notice that the usefulness of this technique, in the 
sense that no calculation of the wavefunction is neces
sary, is restricted to this kind of potentials, since 
otherwise the coefficient B(q, k) will depend on the 
values taken by Jlk(X) in more than one poinL 

In trying to extend this formalism to three dimen
sions we must be careful, since in higher dimensions 
the 6 function can no longer be used to represent a 
limit case of a physical potential of high intensity and 
short range4 (e. g., it can have states with infinite bind
ing energy). What we shall do is to consider the attrac
tive spherical potential 

V(r) = {- Vo, r<a, (11) ° , r~a, 
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and take the limit where a - 0 and Vo - 00 in such a way 
as to satisfy the relevant physical requirements: (a) 
There is one bound state with finite energy EL (kept 
fixed during the limit process); (b) There is a finite 
(nonzero) limit for the scattering cross section. As 
shown in quantum mechanics text books,s condition (a) 
can be satisfied by taking 

(
2m )1/2 rr 2 fi2 Vo a2 

= "2 + 1T f3L a + ... (12) 

in which case there is only one bound state (l = 0) whose 
binding energy EL =.- (1f 2/2m)f3i does not depend on the 
"strength" Voa2 of the potential; it actually depends on 
the way the limit is approached. This result must al
ways be kept in mind when considering 3-d periodic 
structures. With the choice Eq. (12) our second condi
tion is automatically satisfied; in fact, a straightforward 
calculation gives the partial cross sections 

az '" a
2(f3L a)4Z, l * 0, 

h2 1 (13) 
ao"'- I ,l=O, 2m E+ Ezi 

showing that for a - 0, Vo - 00, there is a finite s-wave 
scattering (potentials of this type without bound states 
produce no scattering at all). Our last (and most im
portant) remark is related to the behavior of the wave
functions (for fixed l and positive energy) inside the po
tential well (11). It is easily shown that in the limit (12), 
a partial wave 1/Iz which is finite for r> a, behaves, for 
r < a, in the following way: 

for all positive values of E. 

_ ( 2mVo )1/2 
0'- 7f2 ' 

(
2mE) 1/2 

(b) 1/Iz =O(f3a)Z, f3= --p[2 ,l*O. 

(14) 

(15) 

Here lies the main difference with the one dimen
sional delta potential; we can no more consider the 
wavefunction as a contant Ilk(O) inside the potential 
range. However, as shown in the next section, the 
problem can still be solved conSidering the spatial de
pendence of the s wave alone, 

II. THE DISPERSION RELATION IN THE THREE
DIMENSIONAL CASE 

Let us consider the periodic potential formed by a 
spatial distribution of attractive sites (11), in the limit 
(12), in which each site occupies the center of a cubic 
cell of side d. 

V(x) = ~ 
I,m," 

V(x- xz,m,n), XZ,m,n= (lx + my +nz) d, 
(16) 

withl,m,n=O, ±1, ±2,···. 

In an entire analogy with the one-dimensional case 
we consider the Bloch function 

1/It(X) = Ilt(x) exp(ik . x) 
with 

Ilt(x) = P C(q, k) exp(iq • x), q = ~rr (lx + m9 + nz), 

l,m,n=O, ±1, ±2, ... , 
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(17) 

(18) 

V(x) Ilt(X) = ~ B(q, k) exp(iq • x), (19) 
q 

and 

B(q, k) = ~ ic V(x) Ilt(x) exp(- iq • x) d3x, (20) 

where Vc is the volume of one cubic cell. Substituting 
(17), (18), and (19) into Schrodinger's equation, we get 
[see (7)] 

. - B(q, k) 
C(q, k) = (1f2/2m)(q + k)2 _ E ' (21) 

and, after summing both sides of (21) with respect to 
q, we obtain 

2m '" B(q, k) (2mE ) 1/2 
Ilt(0) = - fi"'l" ~ (q + k)2 _ f32' f3 = nr . (22) 

The above equation for f3, as a function of k does not 
look very promising at first sight, since B(q, k) contains 
the unknown function Ilt(x). However, Eq. (22) can still 
be solved, taking into account the following 
considerations: 

(a) In the case of the potential (11) the domain of inte
gration in (20) is a sphere of radius a - 0, in which 
V(x) = - Vo. 

(b) Consider the expansion of the wavefunction (17), 
for r < a, as a linear combination of the energy eigen
states of one potential well (located at the center of the 
sphere). According to (14) and (15) this expansion can 
be written as 

1/1 = At (sin(O'r) +O(if») . 
t f3za O'r 

(23) 

(c) With k restricted to the first Brillouin zone, we 
can take I1t(X) = 1/It(x) in the integral (20), and still obtain 
Eq. (22) correct up to the first order in a. In fact, the 
contribution of the first order term due to the expan
sion exp(ik' r) = 1 + ik' r - (k' r)2/2 + ... vanishes due to 
the symmetry of the cubic lattice. 

Substituting (23) into B(q, k) [given in (22)] and per
forming the angular integrations, we get 

1 
(2m/1f2) Vo if 

_ 4rr '" (1/O'a) It sin(aax)[sin(qax)/q]dx O(if) 
- (F ~ (k + )2 _ f32 + 0 

q (24) 

Now we can take a - 0 in both members of Eq. (24). 
This limit, however, must be calculated with some 
care, since the result, of a naive computation, will be 
the simple identity 4/rr2= 4/rr2 [see (12)]. This is a 
consequence of the fact that in the potential (11) and (12) 
the physical information (the value of the binding en
ergy) is contained in the first order term in a. What 
we must do then is to compare the coefficient of the 
terms of order a in both sides of (24). This is best done 
by adding and subtracting to its second member the 
expression 

j; ~ (1/ aa) It sin(a ax) sin(qax) dx 
q"O q3 (25) 

which does not depend on f3 or k. We then get 
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(2m/Fi\ Vo (12 = ¥ {;a Po ([1 sin( aax) sin(qax) dx ) ~ 

[ 1 1] 1 
(q +k)Z_ 132 -? + Q(i q~ 

a 11 sin(aa~ sin(qax) dX} 32 
x S + -::r;>f o q n-a- kZ _ 132 ' 

(26) 

where the last term corresponds to the term q = 0 on the 
rhs of (24). In the first term of the rhs of (26) we can 
take a - 0, directly inside the summation sign, since 
the term inside the large brackets assures the con
vergence, giving a term of the order of a. The second 
term, which is independent of k and 13 gives contribu
tions both to the order zero [cancelling the factor 4/n2 
in the expansion of the first member of (26)], and to 
the order a. It can be calculated by adding and subtract
ing to the second member of (26) a similar term, with 
sin(n/2x) in the place of sin(aax). This last contribution 
to (26) can then be written as 

~ (;a) [q~ 7 ;:1 (sin(aaX) - sin ~x )sin(qaX) dx 

+ ~ -h f1 sin ~2 sin(qax) dX]. (27) 
q~O q J 0 

The first term in (27) is of the order of a, since 

After this substitution, the summation in q is readily 
transformed into the following integral: 

4n(2/;li3za ;:~? [1:1 

cos(ix) sin(qX)XdX] 4(i;)~q 

= ~ (1-~) i3 za. (28) 

The last term in (27) can also be transformed into an 
integral whose value is just the zero order term 4/n2

• 

Here, however, we must remember that we need the 
right-hand side of (26) calculated up to the first order in 
a; that is, the difference between the series and the 
integral in the limit a - 0 must be taken into account. 
Numerical calculations give the following result: 

7T 
sin"2x sin(qax) dx 

(1) [ l~ 1 11 . 7T. ] 47Tq
2

dq 
= \all 47T 0 qs 0 sm"2 x smqxdx (21Ti3 
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- 7; .. i ~+ ... =,fz{1-17.8a/d7T2-4i3za/7T2+ ... }. 

(29) 

Substituting into (26) the information contained in (27), 
(28), and (29), we obtain the final result, 

8.9 4n [1 '" (1 1 )] - i3z + ITa = (j3 ~ + ~ (q +k)2 _13 2 - rr ' (30) 

which gives an exact expression for the dispersion rela
tion of the problem. If we consider negative energies 
(13 - if3) and take the limit d - 00 it is easy to verify that 
the single well solution is regained. Really, taking 
d - 00 in (30) we get 

-i3z = (2~)2 f Cq+~}2+i32 -?) rfJq=-i3 (31) 

for all values of k. 

In conclusion: We have obtained an exact dispersion 
relation for a three-dimensional periodic structure 
made out of attractive square wells,. in the limit case 
of infinite depth and zero range (with one bound s-state). 
It is our hope that the present work will be useful in 
the study of periodic potentials. Here, a thorough com
puter calculation of (30) (beyond the possibilities of 
the authors) exploring its dependence on the directional
ity of k and in the parameters d and i3 z will provide the 
surfaces of constant energy, the density of states, etc. 

This problem can certainly be extended in more than 
one direction: We can, for example, consider the same 
potentials forming lattices of different symmetries, or 
we can try a different limit process in order to obtain 
new bound states. A good deal can also possibly be done 
in the calculation of impurity states. 

*Work supported by Funda'tao de Amparo a Pesquisa do 
Estado de sao Paulo (FAPESP), Contract no. 73/0705-R. 

1R. deL. KronigandW.G. Penney, Proc. Roy. Soc. A130, 
499 (1931). 

2See , for example: H. Jones, The Theory of Brillouin Zones 
and Electronic States in Crystals (North-Holland, Amsterdam, 
1960) • 

3SeeRef. 2, p. 13. 
4D.A. Atkinson and H. W. Crates, Am. J. Phys. 43,4 (1975). 
5L. Landau and E. M. Lifshitz, Quantum Mechanics (Perga
mon, London, 1958). 

R.C.T. da Costa and R. Lobo 1956 



                                                                                                                                    

On zeroes of the pion electromagnetic form factor 
I. RasziJIier* 

Institute of Physics. Bucharest. Romania 

W. Schmidt 

Institut fur Experimentelle Kemphysik, Universitiit. Karlsruhe. 75 Karlsruhe. Germany 

I.-S. Stefanescut 

Institute for Atomic Physics. Bucharest. Romania 
(Received 17 May 1976) 

We develop a general procedure for the location of possible zeroes of the pion form factor. which relies on 
interpolation theory for analytic functions. The zeroes are confined (in the unit disk) to regions bounded by 
(real) roots of algebraic equations and by algebraic curves. These regions depend both on the interpolation 
data and the class of functions. which is suitable for the physical problem. 

1. INTRODUCTION 

During the last few years considerable work has been 
performed on the rigorous phenomenology of the elec
tromagnetic form factor of the pion, i. e., on the clari
fication of the exact implications and the significance of 
experimental data for the pion structure. This work has 
shown that the information implied by data depends on 
the theoretical framework in which they are conSidered 
and analyzed. This dependence follows from the fact, 
that one is usually lead to extremal problems in inter
polation theory for analytic functions and that their solu
tion generally depends on the class of functions used. 
The choice of a certain class means assuming some 
a priori restrictions on the pion form factor. 

The question one has to answer is then whether certain 
numerical information is able to determine uniquely a 
function out of the chosen class; this function is then to 
be considered as the form factor. As a rule this does 
not happen, and so one has a whole subclass of functions 
which agree with the information, out of which one can
not select uniquely the form factor. Rigorous phenomeno
logy therefore considers this whole subclass of functions, 
which means the whole class of models compatible with 
a certain experimental situation instead of only one mo
del. The predictive power of experimental data is re
flected in the structure of this subclass and increases 
generally with an increasing volume of data. 

The quantities of main interest in the phenomenology 
of the pion form factor are, on the One side, the values 
allowed for the form factor and for its derivative and, 
on the other side, the values of certain integrals appear
ing through vacuum polarization in atomic level shifts 
and (anomalous) magnetic moments, in which the form 
factor enters quadratically. 

In the first case one faces the mathematical problem 
of determining the region covered by the values assumed 
by the analytic functions of a certain class or by their 
derivatives at a given point of the complex plane. Some
times it is, however, of interest to know precisely that 
part of the complex plane in which the functions of this 
conSidered class may take a preassigned value. This 
problem appears, for instance, in connection with the 
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location of possible zeroes of the pion form factor, 
which are formally important for the use of the Omnes 
type representations. In relatively simple situations 
the problem of the location of zeros can be solved analy
tically, in the more complicated cases the analytic so
lutions are only the starting point of further numerical 
work. 

The second case, i. e., the range of values of integrals 
as in the magnetic moment problem, can be correlated 
with the first one. These correlations turn out, however, 
to be increasingly difficult to study even numerically 
as the experimental data becomes more numerous and 
diverse. 

In this paper we investigate the domains in the com
plex plane allowed for zeroes of the pion form factor in 
various experimental situations and theoretical frames. 
It turns out that if space like experimental data are exact 
and compatible with an entirely local or entirely global 
bound on the modulus in the timelike region, the region 
of location is bounded by algebraic curves. If spacelike 
data are not exact, the zeroes are confined to unions of 
such regions. Further, if the time like bound is given 
locally on part of the cut and globally on the other, the 
analytic location of zeroes becomes an extremely diffi
cult task, which so far remains, apart from the sim
plest situation, unsolved. 

There have been previous considerations l
- 5 related 

to zeroes of the pion form factor, but only part of them 
gave optimal rigorous results. We try to include all this 
work into a general point of view, which we hope to be 
both simple and effective. 

2. ZEROES OF THE FORM FACTOR 

The mathematical problems arising in the rigorous 
phenomenology of the pion form factor may be consi
dered as interpolations with analytiC functions of a 
bounded norm. The norm may be taken in the sense of 
the space H~ or H2, or even in a more complicated man
ner.6 We shall be interested in that situation where the 
values Cj, i=l, ... ,n, assumed by the form factor f(z) 
at some fixed points Zj and the value N of the norm do 
not determine uniquely the interpolating functions. All 
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these functions can then be explicitly parametrized (in 
H«> and H2) in terms of the interpolation data and an 
arbitrary bounded (in the chosen norm) analytiC function 
I/i(z), i.e., 

f(z) = C/>(zj,'" ,zn; cu .. · ,Cn,Z, I/i(z)), 

111/i(z)11 ~N. (2.1) 

In this paper we shall always assume that the complex 
t plane is mapped onto the unit disk of the z plane (with 
t=O-z =0), so Fv(t)=f(z). 

The requirementf(zo)=0 at a certain pointzo fixes 
I/i(z) at z =zo (in fact uniquely, see Ref. 7), 

(2.2) 

On the other hand, the values which the bounded analytic 
function I/i(z) can assume at Zo are restricted to a definite 
region D N in the complex plane for I/i(z 0)' (In H«> this is 
essentially due to the Schwarz lemma; see Ref. 1.) This 
region depends on z 0 and the norm N and will be de
scribed in Secs. 3 and 5. So, finally, we conclude that the 
form factor f(z) may have a zero at z =zo, if the value of 
R in (2.2) belongs to the region DN • 

We will solve this problem first for the HOO norm and 
then for H2, since the mathematical techniques are dif
ferent although the spirit of the procedures is in both 
cases the one outlined above. 

3. ZEROES IN H~ 

It has been shown in Ref. 7 how the problem of inter
polation for (real) analytiC functions of the (Smirnov) 
class DB can be reduced due to a theorem of Szego j to 
interpolation for functions w(z) real analytic in the unit 
disc Iz I < 1 and bounded by Iw(z) I ~ 1. In short, this is 
done as follows: let m (z = exp(iB)) be an upper bound for 
the modulus of the form factor f(z) along the unit circle. 
Then f(z) is bounded everywhere inside the unit disk by 
the outer function E(z) with 

10 E(z)=1-z
2 (U dB lnm(exp(iB)) . (3.1) 

g 1T Jo 1-2zcosB+z 2 

The form factor f(z) can then be represented by 

f(z) =w(z)E(z), (3.2) 

where Iw(z) I ~ 1 for Iz I ~ 1. In Ref. 7 the procedure of 
interpolation for the bounded functions w (z) is given. It 
is based on an explicit parametrization of the interpolat
ing functions w(z) in terms of an arbitrary bounded real 
function. 

It is known! that a function w(z), analytiC in Iz I < 1 
and obeying 

liv(z) I ~ 1, 

w* (z) =w(z*), 

(3.3) 

(3.4) 

can take at a point z only values in (a lens representing) 
the intersection of the two disks bounded by the circles 
going through the points (1, - 1, z) and (1, - 1, - z), re
spectively, i. e., in the region described by the 
inequalities 

(3.5) 
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and 

(3.6) 

A derivation of (3.6) (simpler than that given in Ref. 
1) goes as follows: One starts with interpolating functions 
obeying (3.3) fulfilling the requirement w(zo) =b, 

- b + [(z - zo)/(l-zzt)]w!(z) 
w(z) 1 + [(z _ zoY(l- zzt)]b*wj(z), (3.7) 

Analyticity of w(z) for Iz I ~ 1 implies Iw!(z) I ~ 1. Con
sistency with (3.4) requires w(zt) = b*, which fixes 
Wj(z) at zt , 

b*-b 1 _z*2 
Wj(zt)=~b* --*-. - z - Zo 

(3.8) 

The condition Iwj(zt) I ~ 1 has the solutions (3.6) for 
b =w(z). One observes that the functions w(z) =± (z - c)/ 
(1 - cz) with creal, - 1 ~ c ~ 1, form the boundary of the 
lens (3.6). 

It is noteworthy that the region (3.6) is not only sym
metric with respect to the origin, but also with respect 
to the real axis. 

As an illustration of our procedure for locating the 
zeroes we rederive the domain given in Ref. 1 from the 
normalization of the form factor. Normalization is equi
valent to imposing 

(3.9) 

on w (z). If a < 1, then form factors normalized at z = 0 
have a factor [see (3.2)] 

a +zw(z) 1- 1 w(z) 1 +azw(z) , w(z) ~1, w*(z)=w(z*) (3.10) 

[compare (3.7) with Zo =0]. If z is a zero of the form 
factor, then w(z) =0 and 

w(z) =- a/z, (3.11) 

which can be true only if (- a/z) inserted for w(z) obeys 
(3.6). One of these inequalities is trivially satisfied, 
whereas the other gives 

Iz 1 ~ a 1l2 (z * z*). (3.12) 

Real zeroes can come, according to (3.5), closer to the 
origin, 

1 z 1 ~ a (z = z * ) . (3.13) 

If we now go over to several interpolation points, then 
the rational function - a/z changes into a more compli
cated one. We shall not treat the general case, but only 
the simplest one which already shows the general fea
tures, namely that with one interpolation point w(x) = b 

besides the origin [w(O)=aj. 

In this case, the interpolation of w(z) is obtained by 
iterating (3.7) with the result that1· 9 

- [1 b -a z - x = ~ [ 1 b - a z - x == ~-1 w(z) = ---+--w(z) 1 +-----w(z) . 
xl - ab 1 - xz xl - ab 1 - xz 

(3.14) 
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One must require 

1
- 111b- a

l w(x) = --- ~1 
x1- ab 

(3. 15) 

in order that w(z) should not have poles for Iz 1 ~ 1. The 
interpolation is unique, only if the equal sign in (3.15) 
applies. 

If z is a zero of w(z) [w(z) =0] and if 

z *x, 

then 

- [( z b -a )v1( a b - a)] 1 - xz w(z)=- a+--- z+--- --. 
x 1 - ab x 1 - ab z - x 

(3.16) 

The point 

a b-a 
z =-; 1- ab' 

of modulus smaller than a, cannot be a zero because of 
(3.13) and (3.15); z =x is a zero only if b=O. The posi
tion o( real zeroes is delimited by the inequalities 

( 
ab-a)f, (ab-a) (z - x) z +; 1 _ ab L(z - x) z +; 1 _ ab 

- (l-xz) a+--- ;'0, ( z b - a)] 
x1- ab 

(3. 17) 

(
a b - a )~ I a b - a ) 

(z-x) z+;l_ab L(z-x\z+;l_ab 

+ (1- xz) (a +~: ~ a~)];' 0, 

following from (3.5). The location of complex zeroes 
is obtained by inserting (3.16) into (3.6) applied to W(z). 
This leads to the inequalities 

x(1-bx)lzI4+ x (b- x)(z+z*)lzI2-[(1+ax3)b 

- (a + x 3)] Iz 12 - ax(l - bx)(z +z*) - ax(b - x);. 0, 
(3.18) 

x(l +bx)lz 14 -x(b+x)(z +z*)lz 12+[(1-ax3)b 

- (a - x 3)] Iz 12 +ax(l + bx)(z +z*) - ax(b +x);. O. 

It thus turns out that the position of real zeroes is 
essentially determined by the roots of two equations of 
the second degree, whereas the complex zeros lie in a 
region bounded by algebraic curves of the fourth degree. 
This reflects the general situation: For n interpolation 
points w(z) in (3.5), (3.6) is generally the quotient of 
two polynomials of the nth degree. Therefore, (3.5) 
leads essentially to inequalities of degree nand (3.6) 
leads to inequalities of degree 2n. 10 The location of 
zeroes then depends (in the real case) on the position 
of real roots of two algebraic equations of degree nand 
(in the complex case) on the topology of two algebraic 
curves of degree 2n. Their qualitative discussion is a 
problem of algebraic geometry l1-13 which we shall, how
ever, not pursue. 

As a further illustration of the method we give in the 
following the solution to the problems considered by 
Cronstrom3 and by Bonneau and Martin, 4 which are in 
fact limiting cases of interpolations in one or two points. 

1959 J. Math. Phys., Vo!.17, No. 11, November 1976 

4. SOME LIMITING SITUATIONS 
A. Example 1 (Cronstrom 3 ) 

In Ref. 3, Cronstrom uses the p wave threshold con
dition to write a sum rule, which tells (in principle) 
whether zeroes may exist or not. In our formulation the 
sum rule is obtained by writing the p wave condition for 
f(z)=w(z)E(z) [Eq. (3.2)], O=f'(z =l)=w'(l)E(l) 
+w(l)E'(l). Therefore, 

(4.1) 

Using (3.1) and (4.1) for functions with m(exp(i8)) 
= If(8) 1 = IF(t) 1 we obtain the condition K;' 0 and the ex
pression of K in terms of the modulus of the form factor 

K-.!. r' d8 lnllilll 
-1f Jo (1 - cos8) f(O) 

m [., dt I F(t) I 
=~ J 4",2(t - 4m2)3J2

1n F(4m2) , 
(4.2) 

where we used t=4m2/cos2(8/2). If K=O, then the form 
factor has no zeros. The condition K;' 0 for (4.2) to
gether with the Significance of K = 0 are the sum rule of 
Ref. 3. 

We now inquire about the allowed domain for zeroes 
if K> O. This can be regarded as a limiting case of the 
interpolation with w(x) =;b in the limit that b approaches 
± 1 as x-I so that 

b '" w(l) +w'(l)(x - 1) 

=±1±K(x-1). (4.3) 

To this end, we use the representation (3.7) applied to 
w(z), 

w(z) = (b +: ~:xW(Z))/(l + t_-z:bW(z)). (4.4) 

The requirement of a zero at z, w(z) = 0, yields first 

- 1-xz 
w(z)=-b--. 

z-x 

The inequality (3.5) gives then in the limit x-I 

K-1 
z~--

K+1 

(4.5) 

(4.6) 

for real zeroes, whereas complex zeroes are delimited 
by 

(4.7) 

[see (3.6)]. Equation (4.7) represents a disk bounded by 
a circle situated symmetric with respect to the real 
axis and going through the points z = (K - 2)/ (K + 2) and 
z = 1. 14 

B. Example (Bonneau-Martin4 ) 

The authors of Ref. 4 also use, in addition to Cron
strom's assumptions, the normalization at z = O. Their 
problem may be considered as the interpolation with 
two points z = 0, x, w(O) =a, w(x) = b, in the limit (4.3) 
for x and b. The constraint on b is in this case stronger 
than in Example 1 (Le., b~l, K;'O). Namely, if we 
take the upper sign in (4.3), it follows from (3.15) that 

Raszi lIier, Schmidt, and Stefanescu 1959 



                                                                                                                                    

b~(a+x)/(I-ax), x>O; this leads (in the limitx-l) 
to the additional constraint for K, 

I-a 
K~--

1 +a' 
(4.8) 

In the limit, the (nontrivial) inequalities for the real 
zeroes become 

(z +a)(Kz2 + [2(1 - a) - (1 +a)K]z +aK) ~ 0 (4.9) 

and those for complex zeroes become 

(1 + K) Iz 14 + (1- K)(Z +z*) Iz 12 - [3(1- a) - (1 +a)K] Iz 12 

-a(I+K)(z+z*)-a(I-K)~O, IzI2-a~0. (4.10) 

For the lower sign in (4.3) we obtain new results 
(because the sign of a is fixed). The limitation on K 

from (3.15) is b ~ (a - x)/(I- ax), i. e. , 

1 +a 
K~-

I-a 
(4.11) 

and the (nontrivial) inequalities are formally obtained 
by the substitution a - - a in (4.9) and (4.10). 

As long as one has no information on the sign of band 
K obeys K ~ (1 +a)/(1 - a), one has to take the union of 
the domains described by (4.9)-(4.10) and their counter
parts with a - - a as the region allowed for zeroes. 

5. ZEROES IN H2 

Due to the inclusion of the class H oo into H2, one ex
pects that the region allowed for zeroes of (real) analy
tic functions h(Z)EH2, in Iz 1 < 1, with Ilhll ~ 1, 

(5.1) 

is larger than the corresponding region for functions 
obeying 1 h(z) 1 ~ 1, Iz 1 < 1. The quantitative determina
tion of the new region again follows the procedure out
lined in Sec. 2. One first determines [in analogy to 
(3.5) and (3.6)] the values allowed for a real analytic 
function h(z) at a fixed point z, if its norm is bounded by 

(5.2) 

In order to do this, we consider the interpolation 
problem (in H2) for prescribed values h(~), h(~*), where 
1 ~ 1 < 1. The interpolating functions can be determined 
according to a technique applied in Ref. 15. They are 

1 - ~2 Z - ~ 
h(z) = 1- ~z hW + 1- ~zh2(Z) (~= ~*), (5.3) 

h(z) 
1- 1 ~ 12 

(5.4) 

where h2(z) E H2 is arbitrary. Equations (5.3) and (5.4) 
are analogous to (3.7). Requiring h(~*)=h*(~), hr(z) 
=h2(z*) ensures real analyticity. 
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The decompositions (5.3) and (5.4) are orthogonal15 

in the sense that 

(5.5) 

IIhll 2 = IIh2112 + ~~-_I~~*I :2 [2(1- e)(1- ~*2) 1 h(~) 12 

_ (1 - 1 ~ 12)(1 - ~2)h2(O - (1 - 1 ~ 12)(1 - ~*2)h*2(~)] 

(U ~*). (5.6) 

Applying (5.2) to (5.5) and (5.6) under the condition that 
IIh2112 ~ 0 gives the constraints 

h2W ~ 1 ~2 ~2 (~= ~*), (5.7) 

2(1- e)(1- ~*2) Ih(~) 12 - (1- 1 ~ 12)(1_ e)h2W 

- (1- 1 ~ 12)(1_ ~*2)h*2W ~ ~ ~--Ir, ~\2 (U ~*). (5.8) 

The extremal functions [which realize equality in (5.7) 
and (5.8)] are obtained by putting h2(z)=0 in (5.3) and 
(5.4). Equations (5.7) and (5.8) are analogous to (3.5) 
and (3.6). 

The boundary of the region (5.8) is a curve of the 
second degree, which is an ellipse symmetric with re
spect to the origin, but not with respect to the real axis, 
and with both semiaxes strictly smaller than h(1 
- 1~12r1/2. Consequently, region (5.8) is strictly con
tained inside the set of admissible values at ~ of all pos
sible functions (not only real), holomorphic in the unit 
diSk, with Ilhll bounded by ho The latter set is obtained 
from a representation similar to (5.3) and is the disk 
of radius h(l- 1 ~ 12)"112. 

As before, we first consider the interpolation in a 
single point h(O) = a. From (5.7) we get a 2 ~ h2• If a 2 

< h2, the interpolating functions are [see (5.3) with ~ 
=0] 

(5.9) 

If z =zo is now a zero of h(z), then h1(z) is constrained 
atz=zo, 

(5.10) 

but the parameter hI (z 0) cannot take any value. It has to 
obey the constraints (5.7) or (5. 8) [with h(z) replaced 
by h1(z), ~ by zo, and h2 by hi=h2- a 2]. Thus (5.7) gives 
for real zo' s, 

-a~zo~a, a=lal/1z 

and (5.8) for complex zo' s, 

Izol ~a1/2. 

(5.11) 

(5.12) 

These inequalities represent a region of the same form 
as (3.13) and (3.12).16 

The general interpolation problem in n + 1 real points 
Xk is solved by an expansion of the form 15 

h(z) =takrk(z) + B no1 (z )lzn• 1 (z), (5.13) 
k=O 

with suitably chosen functions rk(z) and B no1 (z) [see Ref. 
15 or for n = 1 the discussions after (5.14)]. The ex-
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pans ion is orthogonal in the sense that 

n 

IIhll 2 ==6a~ + II hn+l II 2 
"" h

2
• (5.14) 

k=O 

As long as L:~=o a~ < h 2, hn+l (z) is an arbitrary function 
with the norm, 

n 

IIh,,+111 2 
"" h;+1 '" h

2 
- :0a~. (5.15) 

k=O 

A zero z ==z 0 of h(z) requires that 

n 

hn+1(zo) ==- B~!l(zO):0akrk(zO)' (5.16) 
k=O 

The regions allowed for zeroes are obtained by again 
uSing (5.7) and (5.8) [with h(z) replaced by hn+1(z0), ~ 
by zo, and h2 by h~+t1. Again we get the boundary of the 
region allowed for zeroes from algebraic equations and 
curves of degrees which increase with the number of 
interpolation points. 

Finally we discuss in this section the interpolation 
problem with two points h(O)==a, h(x)==i3. Equations 
(5.13) and (5.14) read, in this case, 

z 1 _x2 z-x 
h(z) = a +--1 -({3 - a) +z-l-h 2(Z), (5.17) 

x - xz -xz 

(5.18) 

At a zero z =zo, h2(z0) assumes the value 

1 1 [ 2 ] 
( )

- O!(zo-x)-{3(l-x)zo' 
zozo-x x 

(5.19) 

This value must be consistent with functions h 2(z) with 

II 2 2 2 2 1 - x2 
2 h211 ""h2=h -a ----::y-(i3-a). (5.20) x 

The general inequalities (5.7) and (5.8) yield 

[x2 (h2 _ 0!2) _ (1- x2)(8- a)2]z2(z _ X)2 

- (1- z2)[a(z -x) - (3(1- x 2)zP ~ 0 

for real zeroes, and 

(5.21) 

(1 - 1 z 12){(y I Z 12 - ax(z + z*) +x2)[y Iz 14 - yx(z + z*) Iz 12 

+ (y + O!x2) Iz 12 - O!x(z +z*) +ax2] + (3x(1-x2) Iz 12 

X[i3x(l- x 2) Iz 14 +y(z +z*) Iz 12 - (y- a)x Iz 12 

- O!x(z +z*)2 - O!x2(z +z*)])- Iz 141z - x 14 

X [x 2(h 2 - ( 2) _ (1- x2)({3 _ 0!)2] ,;:: 0, 

y = O! - (3(1 - x 2) 

for complex zeroes. 

6. ZEROES FOR AN INTERMEDIATE CLASS 
(H2 , ~ ) OF FUNCTIONS 

(5.22) 

By H2, ~ we denote the class of functions h(z), real and 
analytic in the unit disk I z I < 1, belonging to the class 
D and obeying the conditions 

Ih(T)1 ';::s(8), eEr. 

2
1 r /h(T)12d8';::h~w, w=J:... ( de 
w leI' 2w leI' 
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(6.1) 

(6.2) 

on the arc r of the unit circle and on its complement 
cr, with lns(B) ELI. For this class, the solutions to 
the interpolation problem are not known analytically. 
Therefore, we cannot apply the same scheme of reason
ing as before. In fact, we are only able to solve the 
problem in the simplest case of interpolation in a single 
point, h(O) =a by a rather special procedure. 

First we again use the decomposition (3.2) for h(z), 

i. e., h(z)=w(z)E(z). From h(O)=a follows 

w(0)=aE- 1(0) (6.3) 

for the function w (z) to which we shall apply the results 
developed in Sec. 3. Interpolation is possible if condi
tions (6.1) and (6.2) are compatible with w2(0)';:: 1. On 
the other hand, E(O) is also bounded from above. 5,15 In
deed, according to (3.1), (6.1), and (6.2), 

1r 
InE(O) = 2w J ... I n I h{exp(ie)) 1 dB 

"" 21 ( Ins (e) dB + 21;: In /h(exp(iB» I dB 
w lI' W er 

"":7rllns(e)dB+wlnhe"'lnEo(O)' (6.4) 

In the last step we used Jensen's inequality 

1 J: 1 . 1 dB 1 . 1 de -2 In h(exp(ze» 2_,;:: In 1 h(exp(ze» 2_
2 

- . 
7r er w er 7rW 

(6.5) 

Equality in (6.4) is attained for an outer function Eo(e) 

with IEO(e)l=s(B) on rand IEo(e)1 =he=conston cr. 
From (6.3) follows that zeroes may be present if 

Eo(O) > I a I; these lie in regions given by (3.12) and 
(3.13), with 

a=laIE-1(0). (6.6) 

It is, of course, not essential that the interpolating 
point is x = 0, but as in the case of H2 16 the forbidden 
region for zeroes is not simply the conformal transfor
mation of the disk I z I ,;:: at /2. Rather, one has to take 
the disk I z I < a~!2, where 

ax =lalr1(x), (6.7) 

and F(z) is the outer function with boundary values 

BE r, 

IF(exp(ie» 1 

eE cr, 

1 _x2 

p(e) =1 +X2 _ 2x cose' 

W(x) =2
1 

( p(8)dB. 
7r Jer 

7. COMPARISON OF THE REGIONS OF ZEROES 
FOR THE THREE CLASSES OF FUNCTIONS 

(6.8) 

(6.9) 

In this section we shortly compare the allowed regions 
for zeroes for the three classes of functions considered. 
To this end we have to relate the bounds m(8) (Sec. 3, 
H~ problem), s(8), h~ (Sec. 6, H2,~ problem), and h 2 
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1m z 

-1 

FIG. 1. Allowed domains for zeroes in the H oo and H2 case, 

(Sec. 4, H2 problem) by 

m(8)=s(8), 8Er, 

2 1 1 2 hew =-2 m (8)d8, 
n er 

2 1 (. 2() 
h = 2n J ... m e d8. 

Then the classes of functions are ordered as 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

and the allowed regions for zeroes obey the same order
ing. For interpolation in one point h(x) = a this is equi
valent to 

a 2E-2(x) '" a 2r2(x) '" a 21 ~2x2 (7.5) 

[where E(x) and F(x) are given by (3.1) and (6.8), re
spectively]. Equality on the left-hand side of (7,5) is 
reached only if m2(e) =h~p(e)w/ w(x), e E cr; the right
hand side becomes an equality only if m2(e) =h2p(8), 
8E r with h2=h~w/w(x). 

It may be worth mentioning that in the HOO and H2 case 
the zeroes on the complex boundary of the region al
lowed (for zeroes by interpolations in n points), come 
from functions having n + 1 zeroes; the zeroes at the 
endpoints of the real intervals come from functions with 
n zeroes. [In the HOO case this follows directly from the 
remark made after Eq. (3.8).] 

8. COMMENTS 

The procedure developed in this paper permits one 
in principle to determine the region of zeroes allowed 
for interpolating functions (in H oo

), compatible with 
a certain highest value X~ of X2

, in the sense of Ref. 7b. 
The practical difficulty, which can, however, be ulti
mately overcome on a numerical level if there is a 
strong enough motivation for performing the computa
tion, lies in the determination of all interpolation prob
lems compatible with X~ (i. e., of the points of the set 
Dn of Ref. 7b lying in the ellipsoid X2 .:; X~). The situation 
in H2 is similar, maybe to a certain extent simpler. 

The results of this paper do not imply statements on 
the actual existence of zeroes, only on the fact that the 
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existence cannot be excluded by a certain amount of (ex
perimental) information. One can, of course, ask if one 
can manage to interpolate with functions having no zeroes 
and thereby answer the question if zeroes are necessary. 
In the case of H'" one has then to allow [for an arbitrary 
111 (8)] for the appearance of so called Singular inner 
functions 17 in order to have enough flexibility. In H2 or 
H2,,,,, one can even interpolate reasonably well with 
outer functions. 5 

The procedures presented in this paper also remain 
true in the situation where information is available on 
the phase of the form factor, if one applies the trick of 
the Omnes function. 18,19 

Figure 1 shows the allowed domain for zeroes in the 
cases HOO and H2, if the value of the form factor is known 
at one experimental point z = - O. 4991, apart from nor
malization [Eqs. (3.17), (3.18), (5.21), (5.22)]. The 
bound m(e), needed in the H oo problem, and also for the 
computation of 112 [Eq. (7.3)] was taken from Ref. 20. 

*Work performed under contract with the Romanian Nuclear 
Energy Committee. 
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In this paper we give a more compact representation of the intelligent spin states defined by Aragone, 
Guerri, Salam6, and Tani. Using this new representation, we discuss the differences between minimum 
uncertainty states, coherent Bloch spin states and intelligent states. The evolution of these states under a 
particular time dependent Hamiltonian is studied, showing the relevance of the noncompact subgroup K of 
the Lorentz group. Finally we analyze the radiative properties connected with the intelligent states for a 
pointlike medium. The main results are: (I) they have a nonvanishing dipole moment (as the Bloch states) 
and (II) the proper intelligent states give a spontaneous emission intensity which is different from the one 
provided by the Bloch states. 

1. INTRODUCTION 

In a recent paper, Aragone, Guerri, Salam6 and Tani, 1 

constructed the intelligent spin states as those which sat
isfy the Heisenberg equality for the angular momentum 
operators. Many questions of physical interest were 
not discussed there. 

The purpose of this work is threefold: (a) to give a 
clear distinction between intelligent states, minimum 
uncertainty states, and Bloch states; (b) to show a more 
compact representation of intelligent states; and (c) to 
determine the time evolution and some radiative proper
ties of two different systems initially set in an intelli
gent state. 

This article is organized as follows: In the next sec
tion we give a more compact expression for the intelli
gent states than the original, and we discuss the con
nection between intelligent states and coherent spin 
states. 2-4 We will show the difference between the 2j + 1 
intelligent states and the 2j + 1 states obtained by apply
ing the two-parameter rotation R(T), defined by Arecchi, 
Courtens, Gilmore, and Thomas (ACGT),4 to the stan
dard Wigner states Ij, m). 

Section 3 is devoted to analyzing the difference between 
minimum uncertainty states, atomic coherent spin states, 
and intelligent states. We calculate the expectation val
ues of Jx , Jy, Jz and their quadratic deviations for in
telligent states, using the technique of generating func
tionals, whose details are presented in Appendix A. 

In Sec. 4 we present the explicit evolution of a non
relativistic high spin system, initially set in an intelli
gent state, immersed in a magnetic atmosphere. 

We also estimate the macroscopic dipole and emis
sion rates of a pointlike laser. 

In the last section we make some comments and 
remarks. 

2. COHERENT SPIN STATES AND INTELLIGENT 
STATES 

The SU(2) algebra is defined by the usual commutation 
relations, 

[Ji,JJ]=::.iEIJ~k' i,j,k=::.I,2,3, 

or, in terms of the ladder operators J, = J 1 + iEJ2 
(e = + 1, - 1) and J 3 , by 

(la) 
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(lb) 

The (2j + I)-dimenSional Hilbert space spanned by the 
eigenvectors of J2 and J 3 (labeled by Ij, m) or by 1m» 

J 2 jj,m)=::.j(j+l)lj,m), J 3 Ij,m)=::.mlj,m), (2) 

is denoted by HJ• 

A useful formUI~a ;~r c~or:;~~tation is 

(j +Em)! 1m)=::. . JJ+em 1- Ej). (3) 
J +Em ' 

The ladder operators are useful in order to construct4 
the atomic coherent spin states or Bloch states IT), 

IT)=(I+ ITI 2t J exp(TJ.)I-j) 

=::. exp(TJ.) exp[ln(1 + IT 12)J3] exp(- T*J_I- j) 

=R(T)I-j), (4) 

where T=taniBexp(-icp), BE[O,21T). R(T) represents a 
rotation through an angle B about the axis ~ = sincp el 
- coscpe 2' 

Two different Bloch states are not necessarily ortho
gonal. In fact their inner product is 

(TIIT2)=::.(I+ITI12tJ(I+IT212tJ(I+TtT2)2J. (5) 

The expression of the atomic coherent spin given in 
Eq. (4) is analogous to that for Glauber states, Iz) 
=::.N(z)exp(za+)IO), where the operator exp(za+) is ap.:
plied to the ground state of the harmonic oscillator. 5,6 

The Glauber states satisfy the Heisenberg equality 
6.x 6.p = t. Therefore, one could also enquire whether 
the states IT) satisfy the Heisenberg equality for the 
SU(2) algebra, 

or, what are all the states Iw) which verify Eq. (6)? 

(6) 

For a careful analYSis of Eq. (6), let us define two 
homogeneous functionals of zeroth order, the uncertain
ty functional I(l/J) , 

and the half-commutator squared functional C(l/J), 

C(l/J) = 4 -I I (l/J I [Jj, J 2] Il/J) 1
2(l/J ll/Jt2• 
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In terms of these functionals the Heisenberg equality 
looks like 

(6' ) 

We shall refer to lu) as a minimum (maximum, sta
tionary) uncertainty state if I(I/J) has a local minimum 
(maximum, stationary pOint) at II/J) = lu). Moreover, 
Iw) shall be called an intelligent state if I(w) =C(w). 

Therefore, in principle we have three different kind 
of states related to the angular momentum algebra: the 
Bloch states I T), the intelligent states I w), and the 
minimum uncertainty states I u). 

It is worthwhile to stress that, in the case of the 
Heisenberg algebra {x,p, [x,p]=i}, the corresponding 
functional C(I/J) = 4-t (1/J I [x ,p] 11/J)2' (1/J 11/J)"2 has a constant 
value: t Therefore, any intelligent state of this algebra 
must be a minimum uncertainty state too. 

However, this property does not necessarily hold for 
other algebras where C(1/J) is not a constant number, as 
in the case of SU(2). 

It is a well established property of quantum mecha
nics7 that all the intelligent spin states are given by the 
set of all the states that satisfy the linear equation, 

(8a) 

where a is a real number. Defining y.=t(1-Ea), E=±1, 
J" can also be written as a linear combination of the 
ladder operators, 

(8b) 

leading to the explicit expression of the intelligent spin 
states shown in Ref. 1. With the present notation they 
can be written as 

(9) 

where aN is a normalizing factor which shall be deter
mined later on. 

We note that for a given T", we have 2j + 1 different 
eigenvalues WN, as we see from the explicit form of WN' 
Therefore, the set {lwN(To<»} is for a given a, lal*-1, 
a basis of Hi' 8 

It is also worthwhile to point out that, due to the fact 
that a must be real (therefore y.y:t is real too), To< 
= ± (yjy.)112 can only be real or pure imaginary. 9 

However, we could think of enlarging the definition 
(9) for IWN(7» to any complex number without giving 
raise to any mathematical inconsis tency. In this case one 
has to stress that for complex T not on the real or im
aginaryaxis, IWN(T» does not represent a solution of 
the Heisenberg equation anymore. We shall call these 
states the generalized intelligent states. 

There are two special cases of N, the extremes 0 
and 2j. In fact IWo(T» = I T) and (it shall be shown in this 
section) IW2j(T» = 1- T). Actually these are the simpler 
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cases of the general law relating intelligent states cor
responding to opposite complex numbers, 

[WNt(Tt»= [W N2 (T2», Nt +N2=2j, 7 t +T2 =0. (10) 

This relation is easily seen after having established 
the value of the inner product (p I wN (T» = (wo(p) I wN (T» 
given in Appendix A. 10 1 1 

In order to perform calculations of physical interest, 
it is convenient to have a simpler expression than Eq. 
(9) to describe the intelligent states. Fortunately this 
can be done just by ordinary straightforward algebra. 
It turns out that IWN(T» can be written as 

[Wn(T» =anYt a~y2J exp(T ",J.) [- j), 

n =0, ... , 2j, 

where 

an=~NN!(1 +iT[2)-j, n, Y 1, T~ given by 

n= 2j - N, Y J(y) =/(1), 

(a~)/(y)=anl/a~, T~=T(1-2y-I), 

and the corresponding eigenvalue wn is given by wn 

(11) 

(12) 

= 2y. T-10 - n). Taking into account definition (4) and in
troducing the auxiliary polynomials p j(Y, z, I T I), 

Pj(Y,z, 7)= (yz + TT*(y - 2)(z - 2))j, 

one can write down the intelligent states as 

IWn(T» = anY! a~ exp(T",J.) exp(- 21nyJ3) 1- j) 

=anYla~Pj(y,y, T) fTy), 

(13) 

(14a) 

where the normalizing factor an is shown to be (see Ap
pendix A) 

{z 1': "n"np ( )}-1 12 - (PM)-! 12 an = ! !u,u. 2J y,Z,T = 2i (14b) 

and IT y) means the Bloch state corresponding to the com
plex number 7(1- 2y-l) = 7~o 

We note that in the expression given in Eq. (14a) for 
the intelligent spin states the operator Y 1 a~ occurs. 
Therefore, one has to know the behavior of pj(y ,y, T) I 7 y ) 

in a neighborhood of y = 1, in order to obtain the cor
responding derivatives. 

States having the structure Pj(y ,y, 7) 17) = exp(TyJ.) 
x exp(- 21nyJ3) 1- j) are not atomic coherent, since the 
group parameters 7 y , y do not verify the condition for 
a Bloch-type rotation R (7) (y *- 1 + I Ty 12). 

However, the structure (14a) proves to be very useful 
in order to deduce many properties of intelligent states 
from the corresponding properties of the associated 
Bloch states IT). 

One can also ask if an intelligent state IWn(T» coin
cides with some Bloch state IIJ.). In order to answer this 
question, one can prove that l1 

!Wn(T» = [1J.)::n=O, T=-IJ. or n=2j, T=j.l, (15) 

which shows that proper intelligent states (IWn(T), 
n*0,2j) are not Bloch states, but a refinement of them. 

Moreover, since for each T we have 2j + 1 different 
intelligent states, it is natural to enquire whether they 
could be obtained through some operation applied to the 
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Wigner basis I m). In other words: Are the 2j + 1 states 
IT, m)"'R(T) 1m) (m == - j + 1, ... ,j - l,j) intelligent? 

Straightforward calculation yields (notice that T 
== tanto exp(- il1f/2) , l integer) 

J a IT, m)==- m sinO IT, m) + cosO(j +m)I/2 

x(j_m+l)1I2IT,m_l). (16) 

The second term in the right-hand side shows that IT,m) 
is not an eigenvector of J a, unless cosO(j + m) = 0. 

As in general I T I "* 1, the only possibility we are left 
with is m == - j, which means that in the set {I Tm)}, only 
IT, - j) == I T) is inteUigent. In the particular case where 
cosO == ° (0 == 1f/2 + k1f, k integer), it is immediate to see 
that such a situation corresponds to a = 0, 00, L e., J a 

==J1 or J 2, respectively. In that case it is easy to under
stand why IT == exp(- il1f/2) , m) is an eigenstate of J 1 (or 
J 2): R(T==exp(- il1f/2) corresponds to 1f/2 rotations about 
J 2 (or J 1), therefore the states IT) == exp(- il1f/2) , m) are 
nothing else but the Wigner basis with respect to the 
x (or y) axis. 

3. EXPECTATION VALUES FOR INTELLIGENT 
STATES AND MINIMUM UNCERTAINTY STATES 

In order to define calculations of physical quantities 
for systems prepared in an intelligent state, one has to 
develop a suitable technique to handle the corresponding 
matrix elements. As ACGT have shown for the Bloch 
states, the technique of the generating functions has 
been proved to be very useful. In Appendix A we present 
with some details how the technique due to ACGT is ex
tended to deal with intelligent spin states. 

If we define the operators (. )n1n2 as 

[
anI on2 ~ 

1"1 n2 '" y lZ 1 0~1 0~2f(Y , Z) '" -;;;ij on2f (y , Z ) , 
u y z y=z=1 

(17) 

one finds (see Appendix A) for the expectation values of 
J 1 for a system in an intelligent state, 

(Wn(T) IJ1 IWn(T» 

'" (J1\T == 2j ReT(y (z - 2)P2J-l (y, Z , T) ]nn(p~1rl 

(Wn(T) IJ2 Iw n(T» 

'" (J2)nT==- 2jImT(y(z - 2)P2J_l(Y,z, T)]nn(p~Jtl (18) 

(Wn(T) IJ3 Iwn(T» 

'" (J3)nT ==j[ (TT*(y - 2)(z - 2) - zy )p2J_l]nn(p~~;rl 

Further on, by taking second-order derivatives of 
the generating function X A , defined in Eq. (A8), we 
evaluate the quadratic deviations (~~ )nT' 

1965 

(~Ji)nT= ti(2j - I)(T2 + T*2)(y2(z - 2)2p2i_2]nn(p~Jrl 

+j[(y2z 2 +2jTT*YZ(y - 2)(z - 2»P2J_2]nn(p~Jrl 

+ M(TT*(y - 2)(z - 2) - ZY)P2J_l]nn 

- 4j2(ReT)21[y (z - 2)p2J_tlnn?(p~Jr2, (19) 

(~J~)nT == - tj(2j - I)(T2 + T*2)(y2(z - 2)2p2J_2]nn(pm-1 

+j[(y2Z2 +2jTT*yz(y - 2)(z - 2»p2J_2]nn(p~1)"1 

+ -b[«(y - 2)(z - 2)TT* - zy)P2J_l]nn(pm-1 

- 4j2(ImT)2{(y (z - 2)P2i_1]nn}2(pm-2, 
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(~~)nT == - 4j2{[zyp2i_tlnn}2(pm-2 + 2j[ZYP2i_l]nn 

X (p~Jrl + 2j(2j - 1)(y2z2p2i_2]nn(p2~i)-I. 

In a similar way, the mean values of monomials of 
the type .JtFi'pn can also be calculated by an appropriate 
number of derivatives of the generating functions, one 
of which is X A (aj3y) , defined in Eq. (A8). 

Once we have obtained the values of (~Jt 2)nT and 
(J3)nT we are in a position to discuss more precisely 
what are the differences between minimum uncertainty 
states 1).1.), and intelligent states Iw) of the SU(2) alge
bra. As we know this algebra has commutators which 
are not numbers, it is a good candidate to find out ex
plicit examples of intelligent states which are not mini
mum uncertainty states. 

Actually, in order to determine all the minimum un
certainty states, one should have to parametrize Hi and 
thereafter calculate I(l/i) and C(l/i) for this Hi parametri
zation. Proceeding in that way, one obtains two functions 
depending upon 4j + 1 independent real parameters and 
it is a standard task to find both the local minimums of 
I(l/i) and the subvariety where I(l/i) ==C(l/i). 

If we restrict ourselves to a subset B of Hi' we can 
explore what happens on B. Evidently, any intelligent 
state that belongs to B is an intelligent state in Hi' On 
the contrary, that I U B) is a minimum uncertainty state 
on B does not necessarily imply that IUB) shall be a mi
nimum uncertainty state on the large variety Hi' 

For B'" {I T), T == tantO exp(- i41)}, the uncertainty func
tionaII(l/i) has, on B, the value12 

I( T) ==-~i(1 - sin20 sin241)(1 - sin20 cos241), (20) 

while for C(l/i), we have 

C(T) == 4-1j2 cos20. (21) 

Due to the simplicity of both I(T) and C(T), it is im
mediate to solve the Heisenberg equation I(T) == C(T). 
That gives 

j2 sin40 sin2 2cp == 0, 

or equivalently 

(22) 

0==0,41 arbitrary, 0 arbitrary, 41 ==nrr/2 (n integer). 

Because of the degeneracy at the origin in the polar 
representation (0,41) of the complex plane, the solution 
given in Eq. (22) is exactly the set of the two axes of the 
complex plane. That corresponds to the fact already 
mentioned: The only intelligent Bloch states are those 
contained in the two axes. Of course, as we have shown 
before, there are intelligent states which are not Bloch 
states. 

In connection with the possible minimum uncertainty 
states located on B, one has to find the local minimums 
of I(T). I(T) has nine stationary points Ts ' 

Ts ==tan(mrr/4) exp(- inrr/4) , m =0, 1, 

n==0,1, •.• ,6,7. (23) 

It is straightforward to verify that Ts == ° gives a maxi
mum of I(T), and that Ts== exp(- inrr/2) give the four mini
mums while the remaining four points T s == exp[ - i( rr / 4 
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+n7T/2)] give saddle points of /(T) in the subset B. That 
means that only the four points of B(Ts = exp(- in7T/2)) 
can be minimum uncertainty states on H j • 

Nevertheless we have a lot of intelligent states de
fined on B (T any real or pure imaginary number) which 
shall proceed to be intelligent states when we enlarge 
the calculations to the whole H j • 

4. DYNAMICAL PROPERTIES OF THE INTELLIGENT 
STATES 

The first situation that we want to consider is the time 
evolution of a nonrelativistic spin j system (of magnetic 
moment y), in a magnetic environment B(t) of the type 
considered by Gilmorel3 : 

(24) 

where 2B"z is a constant magnetic field along a fixed 
direction and B is the strength of a perpendicular field 
of proper frequency 2wI' 

The corresponding time-dependent Hamiltonian is 

H(t) = -liyJ' B(t) = -liy(BJ. exp(- 2iwlt)J+ 

+ BJ. exp(2iwlt)J_ + 2B"J3), (25) 

with J represented in the (2j + 1)-dimensional space H j • 

By going to the two-dimensional representation of SU(2), 
Gilmore has evaluated the time evolution operator U(t) 
which satisfies the Schrodinger equation iJiU =HU, 

{

COS21/J exp(iw_t) + sin21/J exp(- iw+t) 

U(t) = . . 2'''' t (. t) Z sm 'l'smw2 exp ZWj 

i sin21/Jsinw2texp(-iwjt) } 

cos21/J exp(- iwj) + sin21/J exp(iw+t) , (26a) 

where w+, w_, and 1/J are given by 

w± '" W2 ± wI> w2 '" [y2 Br + (yB" + Wl)2J1 /2, 

sin21/J=yBJ.wi\ cos21/J'" (yB" +wl)wi1
• 

(26) 

Let us assume that our system has been initially pre
pared in an intelligent state Iw,(T). Therefore, in any 
other subsequent instant t, the system shall be in a cer
tain state Iw,(t, T) determined by the evaluation opera
tor U(t); namely, Iw,(t,T)=U(t)lw,(T). We want to in
vestigate whether Iw,(t, T) is an intelligent state or, at 
least, how close to an intelligent state it is while it 
evolves. We know, after AeGT, that a Bloch state re
mains a Bloch state along its evolutions under the 
Hamiltonian (25). 

Moreover, as both IWo(T) and IW2j(T) are Bloch 
states, it might happen that any proper intelligent state 
could evolve remaining in the subset of the intelligent 
states too. 

In order to give an answer to this question, let us 
briefly mention some useful facts concerning SU(2) and 
IW,(T), as has been given in Eq. (14a). 

The first property we want to point out' concerns the 
structure of Iw,(T) itself; Iw,(T) can be written 

1 W,(T) =a,Y1 a~k(y, T) 1- j), 

k(y, T) '" exp(TyJ.) exp(- J 3lny2), 
(27) 

where k(y, T) belongs to SL(2, e), 4 the analytic continua
tion of SU(2). 14 In the two-dimensional representation of 
SL(2, C), k(y, T) has the form 

k(y, T) = exp(T:tfJ exp(- (lny2)J3) 

(28) 

showing that it belongs to the well-known four param
eter subgroup K of SL(2, C), 15 as reviewed in Appendix 
B. We prove in this appendix that for y '* 1, k(y, T) con
tains a Lorentz boost and, therefore, k(y, T) does not 
represent a proper rotation. 
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The operator U(t)k(y, T) = l(t, y, T) has also been ex
plicitly evaluated in Appendix B, Eq. (B8). This allows 
us to write the state Iw.(t, T) as follows: 

1 w,(t, T) = a,(T)Y 1 a~ it exp(l214-1JJ 1- j), (29a) 

where 

i2=[T(y - 2) cos21/J+y sin1/Jcosq)] exp(iw)) 

+ [T(y - 2) sin2</! - y sin</! cos</! 1 exp(- iw)), 

14'" [T(y - 2) sin</! cos</! + y sin241] exp(iw+t) 

+[y cos2</!- T(y - 2) sin</! cos</!J exp(- iwj). 

Although the structure of the state Iw,(t, T) seems 
complicated, it is proved in Appendix B that this state 
becomes, up to a phase factor, an intelligent state if the 
transverse magnetic field vanishes, i. e., BJ. = O. Only 
in this case the evolution of an intelligent state of order 
n determined by the complex number T is a generalized 
intelligent state, of the same order 11, corresponding to 
the complex t-dependent number T' = T exp(2iyB"t). If 

n = 0 we recover the result of AeGT: Iwo(t, T) = exp(2i 
x argl4) 1 l2 f4-

1). That is, the evolution of a Bloch state 
keeps being a Bloch state, up to a phase factor. 

The second situation we want to treat here is the rel
evance of the intelligent states in connection with the 
pointlike laser, 16 either with a semiclassical or a fully 
quantized representation of the laser field. 

By a semiclassical pointlike laser we mean a collec
tion of identical atoms, each with two effective energy 
levels (with liw the energy gap) interacting with a classi
cal field E(t) = 2Re{Eo exp(iwt)}, which has the resonant 
mode of frequency w. 

The Hamiltonian corresponding to this system is, 
following AeGT, 

H =HA +HAF "'liwJ3 - (p' Et)J+exp(- i wt) 

- (p*. Eo)J_ exp(iwt), (30) 

where the vector p is the complex dipole moment as-
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sociated to each atom giving rise to the total dipole 
moment 

(31) 

For a system of No atoms, the cooperation number j 
must satisfy the inequality 

(32) 

We are assuming either that p verifies p. Eo == 0 
== p* . Et or, if this selection rule does not apply, that 
we are working in the rotating wave approximation. 

If one neglects the interaction term HAF between mat
ter and the electromagnetic field, namely H AF == 0 in Eq. 
(30), it is possible to give an estimate of the expectation 
value of D. For the system initially in an intelligent 
state [Wn(T», the state [wn(t, T» becomes [wn(t, T» 
== exp(- ijwt) IWn(T exp(- ijwt»). Therefore, 

(wn(t, T) ID Iwn(t, T» 

= p(J.)nT(t) + p*(JJnT(t) 

= 2j(pT* exp(iwt) + p*T exp(- iwt» 

x [y (z - 2)p2i_llnn(p~:))"I. (33) 

This result is a refinement of the corresponding one 
for the Bloch state, which is reobtained here by taking 
n =0. (It is worthwhile to remind the reader that for the 
Wigner-Dicke states the expectation value of D 
vanishes. ) 

As the macroscopic dipole of the system does not 
vanish, there exists a nonvanishing classical radiation 
intensity Ie generated by this oscillating dipole, which 
in the wave zone is 

le=10· 4j2TT*{[y(Z - 2)p2i_tlnn}2(p~Jt2. 

Introducing the fully quantized Hamiltonian 

H =HA +HF +HAF =lfwJ3 +lfwa+a +yaJ+ +ya+J_, 

we can calculate the emission rate for the pointlike 
laser. 17 

(34) 

(35) 

The spontaneous emission intensity can be calculated 
for an initial intelligent state IWn(T», in a way similar 
to what ACGT did for this model, 

rr/2<e<rr, 

(J3)2T < (J3)IT < (J3)OT (i ~ 3), 

r:,P==Iot l(mIJ_lwn(T»12 
m =-J 

==lo(wn(T) IJ+J_lwn(T» 

=10(J_J.)nT + 2IO(J3)nT. (36a) 

The matrix elements occurring in this relation are 
easily evaluated by means of the generating function 
XA(a, (3, y), given by Eq. (A9), 

r:.~==102jTT*{(2j - l)[yz(y - 2)(z - 2)P2J_2lnn 

x (p;m- 1 + [(y - 2)(z - 2)P2J_tln"(Pzit1}, (36b) 

an expression which reduces for n= 0 to the results foune 
by ACGT for Bloch states. 

In the case of a Dicke-Wigner initial state 1m), the 
spontaneous emission intensity is 1"1 =10(j + m)(j - m + 1). 
In order to compare the spontaneous emission intensi
ties between intelligent states and Dicke-Wigner states 
we have to evaluate 1"1 for a Dicke-Wigner state having 
the same energy expectation value that IWn(T».18 There
fore, introducing 1n = (J3\T in 1"1, we get 

[l"llm=<J3)nT=10 • 2j[1- (VZP2i_l)nn(pZJr1l 
(37) 

A similar calculation for the stimulated intensity pt 
leads to: 

m 

Consequently, using the value given in Eq. (18) of 
(J3)nT we have 

(38) 

(39) 

which is identical to the stimulated intensity emitted for 
an initial Dicke state with quantum number m == (J3)nT. 

Just for completeness, one can explicitly calculate 
(J3)OT' (J3) 1 T' and (J3)2T. It happens that, for j ~ 3, the 
three values decrease for 0 ~ e < rr/2, and increase for 

(40a) 

(40b) 

(J) == _ 2 cose [(j - 1)(j - 2)(2j - 3) cos4 e + 2(j - 1)(4j - 5) cos2 e + (5j - 4) 1 
32T [(j _ 1)(2j _ 3) cos4 e + 4{j _ 1) cosze + 1] (40c) 

However, as we have not been able to proceed a step 
further we are not allowed to claim a general property 
from Eqs. (40). The only statement we are making is 
that the stimulated emission intensity (and also the en
ergy expectation value) of the proper intelligent states 
(n = 1,2) is greater than the stimulated emission inten
sity arising from the Bloch state corresponding to the 
same value of the parameter T. 
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The last point we want to mention concerning the dif
ferent behavior of intelligent states in comparison with 
Bloch states is the following: Suppose we have initially 
prepared a system of spin j in an intelligent state IWn(T» 
and we want to know what is the probability that, under 
the magnetic Hamiltonian (25), the system could be found 
in t> 0 in a Wigner state I m). Making use of the results 
of Appendices A and B, we obtain the transition 
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probabilities 

P(n.T)~ 1m) = 1 (m Iwn(tr» 12 = (n! )2a~(r) C ~ m) 

{ (~) X LJ a~tarI2arltat"~12 
(/t. 12)=(0.0) 

whereal and CI' i=2,4 are 

a2'= exp(- iWtt)[ r cosw2f + i sinw2t(r cos2</J + sin2</J)], 

a4'= exp(iwtt)[COsw2t + i sinw2t(r sin2</J - cos2</J)], 
(41b) 

C2'= exp(- iWtt)[ (r - 2) cosw2t + i sinw2t«(r - 2)cos2</J 

+ sin2</J)], 

C4'= exp(iwtt)[COsw2t - i sinw2t (r sin2</J + cos2</!) J. 
In order to see how a pure intelligent state behaves, 

one can take a particular case of Eqs. (41). For in
stance, let us choose Im)= I-j). Making use of the 
above result, it turns out that (r=tanieexp(+imr/2» 

r Po. T)~ I-j) = (2j cos2e + sin2ert 
p(O.T)~I-j) 

x 1 + sin2w2t. [sin22</J(r2 - 1) - r sin4</J] 
1 + sin2w2t. [sin22</J(r2 - 1) + r sin4</J]" 

This ratio r is finite for any </J, r, and t unless r 
takes the value r~ = - cotan2</J. In that case, Eq. (42) 
becomes 

r P<t.TtH-j) =[1 + (2j - 1) cos24</J]-t 
P(O ..... H-j) 

(42) 

(43) 

showing that, for tn = (n + i)1T/ w2 the value of r is in
finite. Consequently we see that the behavior of the 
proper intelligent s tate I w t (t, rm is qualitatively differ
ent from the behavior of the Bloch state Iwo(t, rD>. 

Further, as for r~, the function c4(f) appearing in Eq. 
(41) has the value 

c4(r~) =exp(iwtt) cosw2t. (44) 

It is clear that for instants tn = (2n + 1)1T/2w2 and for 
numbers n, m (which have to verify n + m ~ j - 1)19 the 
transition probability P(n.~)~ 1m} vanishes with period 
T 2=1T/W2' 

Looking at the structure of the probability P(n.T)~ 1m}' 

one gets two other special values of r, 

r~' =2 - tan2</J, r~"=2. (45) 

These values cause the periodic vanishing of P(n.T}~ 1m} 

too, now because C2(t) vanishes with the same period as 
above, for each instant t~ =n1T/ w2 and for quantum num
bers n, m such that n + 1 ~ j + m. 

5. DISCUSSION AND COMMENTS 

We have been able to establish a clear distinction be
tween intelligent spin states, minimum uncertainty 
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states, and Bloch states. We have shown that the gen
eralized intelligen states constitute a refinement of the 
Bloch states containing them as extreme cases. 

We also pointed out in Eq. (10) the symmetry in the 
definition of intelligent states which allow us to restrict 
the analysis of Iwn(r» to any half-plane containing the 
origin of the whole complex plane. 

Thereafter we evaluated, through the technique of the 
generating functions, the expectation values of both the 
components of the angular momentum vector and of their 
mean square deviations. They turned out to be rational 
functions of rr* = tan2~e. 

Moreover, by making use of some algebraic proper
ties of the noncompact subgroup K of SL(2, C) we studied 
some dynamical properties of the intelligent states valid 
both for a reasonable time dependent model of a spin-j 
particle in a magnetic atmosphere and for a pointlike 
laser. 

One important result found is that for a permanent 
magnetic field B = 2B"e3' proper intelligent states evolve 
continuously in the set of generalized intelligent states. 
Of course, the two extreme states (n = 0, 2j) which are 
Bloch and intelligent evolve in the assembly of the com
plex Bloch states. 

The transition probabilities, for a system prepared in 
an intelligent state, of becoming in time f a Wigner
Dicke state, have been computed. It turned out that there 
exist three values of the real parameter r defining an 
intelligent state for which P(n. T)~ 1m} vanishes periodically. 

In the case of the pointlike laser, the spontaneous and 
stimulated emission intensities and the macroscopic 
dipole of the system have also been evaluated showing 
again a refinement of the results obtained using Bloch 
states. 

We have also proved that, in general, an intelligent 
state is not a minimum uncertainty state and we pointed 
out where the noncoincidence of both kind of states 
stems. 

It is also worthwhile to note that, contrary to what 
has recently been asserted by Kolodziejczyk, 20 the co
herent states defined by Mikhailov2t cannot be used to 
explain the relationship between coherent and intelli
gent states, essentially because the only Mikhailov co
herent s tate which is intelligent is, trivially, the ground 
state. 

Finally, let us remark that Vetri' s comment22 that 
Radcliffe states which do not point in the z direction and 
are labeled "intelligent" in Ref. 1 are actually those 
oriented in such a way that the ii axis is along x or y is 
precisely 'what Aragone, Guerri, Salama, and Tani 
meant when they said that "only those Radcliffe states 
located on the real line or the imaginary axis are intel
ligent states. " 

APPENDIX A 

In this Appendix we are going to show the details con
cerning some of the calculations whose results have 
been used in the text. 
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Let us recall that the states we are dealing with have 
been written in the form [Eqs. (13)]. 

IWn)=anla~l{ph,Y, Irl) IrY)}Y:l' (AI) 

where 

(A2) 

Suppose we are interested in computing the value of 
(wn2Iwnl)' where Iw n1) remains as in (AI). Iwn2) may be 
written 

(A3) 

where instead of y we use a different variable .e, in or
der to avoid confusion. Making the scalar product we 
have (p j is real for y, z real numbers) 

(wn2Il{'nl)=a~2anla~2a~l{Pj(y,y, r) 

xPJ(.e,.e,r)<r~lr)} 
~:l 

but, by virtue of Eq. (5), 

(r .. lry)=(l + Iry 12)"J(1 + I r .. 12)"J(1 +r:ryJ 

=-y2JpJ (y,y, Iril-1z Upj(Z,z, Irl)"1 
x[l + Ir 12(1- 2/y)(1- 2/z)j2J 

=Pj(Y,y, Irlr1pj(z,z, Irlr1pu(Y,z, Irl). 

(A4) 

(A5) 

Introducing this value of (r "21 ry) into Eq. (A4) we get 
the final value of (w n2 Iwn1 ), 

(A6) 

If we take here n2 =nl and impose that the result found 
must be 1, we get the modulus of the normalizing factor 
an, as was mentioned in Eq. (14). Once we get the value 
of the an, the scalar product (A6) is completely defined, 

pnl n2 

(wn2 Iwn l) (p2}nl)d~2]"2)1!2' (A7) 

In order to calculate expected values of observables 
contained in the SO(3) algebra, it is of crucial impor
tance to evaluate the generator function XA(a, (3, y), de
fined in the ACGT paper as 

XA(a, (3, y)=- (wn I exp(yJJ exp({3J3) exp(aJ+) IWn)' (A8) 

Introducing the form (A3) of Iwn ) and applying the 
Baker-Campbell-Haussdorff formula we have that 

XA(a, (3, y) = Ian 12il~a~{zy exp(- (3/2) 

+[r(y - 2) + ay ][r*(z - 2) +yz] exp«(3/2}2J 

(A9) 

which, if we define the auxiliary function q in y, z, a, 
(3, y, by 

q2j(a, (3, y, y, z, r) =- {zy exp(- (3/2) + exp«(3/2) 

x [r(y - 2) + ay][ r* (z - 2) + yz ]}2J, 

(AID) 

can be rewritten in the shorter form 

(A11) 
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Once we have evaluated X A , it is very simple to es
timate the expected values of, for instance, J 1, J 2 , J 3, 

and (AJ1)2, (AJ2)2 for the intelligent states Iwn). 

In fact, 

and 

(wn IJ11wn) = t(wn IJ+ IWn) + t(Wn IJ_lwn) 

= t(a0A)",:a:y:O + i(a,x A)",:a:r:o, 

(W n IJ31wn) = (aaXA)",:a:y:O, 

Consequently, 

4 (AJ1)2 = (a~0A)",:a=y=o + (a~A)",:a:y:o 

+ 2(a~,xA)",=a=y=o + 2 (aaXA)",:a=r=O 

(AI2) 

(A13) 

(A14) 

and in the same way the value of 4(AJ2)2 can be given, 

4(AJ2)2=- (a~0A)O- (a~,xA)o+2(a;,xA)O 

+2(aaX",)O+[(00A)O- (O,xA)O]2. (AI5) 

It is interesting to observe that qu(D,D,D)=P2j(Y'z, Irl). 

APPENDIX B 

In this Appendix we shall give some group results con
cerning SL(2, C) and its . subgroup K. 

The four-parameter subgroup K has been extensively 
used in connection with the irreducible representations 
of the Lorentz group (see for instance Ref. 15). K is de
fined as the set of all the elements k of SL(2, C) of the 
form 

Kd(P,q)~~';)' p,q ,omplex ,umbe",. (Bl) 

The importance of K lies in the fact that any element 
1 of SL(2, C) can uniquely be decomposed in the form 

(B2) 

Moreover, as any k(pq) can uniquely be factorized in the 
form 

= exp(qp-1JJ exp(- 2lnpJ3), (B3) 

1 can be uniquely decomposed as a product of three 
exponentials, 

1 = exp(qp-1JJ exp(- 2lnp . J 3) exp(.eJJ. 

Let an arbitrary 1 E SL(2, C) be given, 

It is easy to check that 
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The elements kly, T) defined in Eq. (28) have the struc
ture (Bl), therefore the convenience of dealing with K 
(even if the restriction one could make of keeping p real 
could suggest that the three-dimensional subgroup K' 
= {k E K : p real} should play some specific role, more 
centrally than K itself). 

Just for the sake of completeness it is possible to 
write down the four-dimensional Lorentz transformation 
A(k) represented by kly, T). Following Gel' fand, Graev, 
and Vilenkin23 it is straightforward to prove that A(k) 

== A1A2, where AI is the standard Lorentz boost (Iy 1*1) 
and A2 is a distortion of the {x2, x-} two-dimensional 
plane (or of the {xl, x-} two-plane accordingly to whether 
T is a real or an imaginary number, respectively). The 
distortion A2 turns out to be 

(A2x)+ ==x·, 

(A2xt ==X- + T~T:X· + 2112ReT yX2 _ 21/2ImT yXI, (B6) 

(A2x)1 ==xl - 21/2ImT yX., (A2x)2 =x2 + 2112ReT 0+' 

while the boost AI applied to x = A2x gives 

(AI;)+=y-2X+, (Al x)"=y2x-, 
(A1x)l=xI, (A1x)2=X2, (B7) 

where we denoted by x" = 2-1/ 2 (xO 'F x 3) the usual two null 
coordinates. 

We are interested in the decomposition (B5) for the 
operator U(t)kly, T) in order to have Iwn(t, T) written in 
a way resembling an intelligent state. Calculating the 
matrix product, we get 

y-l cos21ji exp(iw.t) +y-l sin21ji exp(- iw.t) , [T(y - 2) cos21ji + y sinlji coslji 1 exp(iw_t) 

f=U(t)kly,T)= 1 2 = 
(

f f) 
f3 [4 Y -1 simp coslji[exp(iw.t) - exp(- iw_t)], 

+ [Tly - 2) cos2z/! - y sinlji cosljil exp(iw.t), 

[y sin21ji + Tly - 2) sinz/! coslji 1 exp(iw.t) 
(B8) 

With this result, one obtains for Iwn(t, T) = U(t) IWn(T), 

Iwn(t, T) = an(T)YI a~fly, t, T) 1- j) 

=anYla~W exp(fi;IJ. 1- j), 

or what is the same, 

Iwn(t, T) = an(T)Y1 a~ {exp(2ij argi4) 

X(IZ212+ 1[41 2)Jlfi4-1
)}, 

(B9) 

(BI0) 

in terms of the Bloch state IT)= Ifi41
). In the case 

where n = 0 (and consequently the term has been pre
pared in a Bloch state), we have for I wn(t, T), 

Iwo(t, T) = exp(2ijY I argf4) • Y II f2Z41) , (Bll) 

a state which differs by a phase factor 2jY1arg14 from 
the standard Bloch state corresponding to the complex 

A A I 
number r(t) = Y1(l21;j ). 

The explicit expression shown in Eq. (BI0) for 
Iwn(t, T) allows an easy calculation of the transition 
number (Illwn(t, r) for an arbitrary coherent spin state 
Ill) , 

I n { A * A 2J} (Il wn(t, r) =an(r)aO(Il)Yla~ (14 + Il 12) 

=an(r)aO(Il)( In) (~) [sinlji(sinlji + l' coslji) 

x exp(iw.t) + coslji(coslji - l' sinlji) exp(- iw.t) 

+ Il * sinlji(sinljiT - coslji) exp(- iw.t) 

+ Il * coslji(r coslji + sinlji) exp(iwj)]n 

x [sinlji(sinlji - l' coslji) exp(iw.t) 

+ coslji(coslji + l' sinlji) exp(- iw.t) 

- J.l * sinlji(T sinlji + coslji) exp(- iw.t) 

- Il * COSIji(T cosz/! - sinz/!) exp(iwJ) l2i-n
, 

(B12) 

This expression is very useful in order to investigate 
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+ [y cos21ji - Tly - 2) sinz/! cosl,bl exp(- iw)). 

under what conditions Iwn(t, 1') could be an intelligent 
state. It is sufficient to calculate (1lIW~(T') and to com
pare its value with (B12). If we prove that there exists 
(n',T') such that for any complex Il, (Ill W". (1") 
= (Illwn(t, 1'), then the state IWn(t,T) keeps being intel
ligent along its evolution under the influence of the 
Hamiltonian given in Eq. (26). Since 

(Illwn' (1") 

=an.(T')ao(Il)(!n') (!~,) (1 + Il*T,)n' (1_Il*T,)2J-n', 

(B13) 

and both polynomials in the variable Il * (B12) and (B13) 
must be identical, they have to contain the same roots 
with the same multiplicity. Therefore, n' has to be equal 
to n. Moreover, if we proceed with the analysis, one 
can immediately recognize that they are going to co
incide iff sin21,b == O. That implies cos21,b == (- l)P or, 
equivalently, l,b==nrr/2. The condition z/!=nrr/2 [see 
Eq. (26b)] is equivalent to saying that B~ = O. Thus, 
after Eq. (B8), we have 

Iwn{t, T) = exp(- 2ijyB ll t) IWn(T exp(2iyB Il t))). (B14) 

Of course, if l' = I l' I exp(in7T/2), T' = l' exp(2iyB ll f) 
= I l' I exp(i(nrr/2 + 2yB Il t)) we get a generalized intelligent 
state, which is strictly intelligent for t such that 2yB ll t 
=mrr/2, i. e., it is periodically intelligent. 
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Higher indices of group representations * 
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The nth order index of an irreducible representation of a semisimple compact Lie group, n a nonnegative 
even integer, is defined as the sum of nth powers of the magnitudes of the weights of the representation. It 
is shown, in many situations, to have additivity properties similar to those of the dimension under 
reduction with respect to a subgroup and under reduction of a direct product. The second order index is 
shown to be Dynkin's index, multiplied by the rank of the group. Explicit formulas are derived for the 
fourth order index. A few reduction problems are solved with the help of higher indices as an illustration 
of their utility. 

1. INTRODUCTION 

Many years ago Dynkin" 2 defined the index of the 
irreducible representation (IR) A of a simple Lie group 
(all groups in this article are compact) by the formula 

(1) 

N~ is the dimenSion of the IR, and r is the order of the 
group; R is half the sum of the positive weights of the 
adjoint representation and 

(2) 

where M,\ is the highest weight of the IR. The scale in 
weight space is fixed by giving the highest weight of the 
adjoint representation the magnitude ft. Dynkin's 
index is closely related to the second order Casimir 
operator whose eigenvalue3 is K,\2 _ R2. 

Dynkin showed that his index has additivity properties 
similar to those of the dimension under reduction of an 
IR with respect to a simple subgroup or under reduction 
of the direct product of two IR's. If the IR A decomposes 
into the subgroup IR's 11, then 

j~ =p6j", (3) 

where P depends on the group and subgroup but not on the 
IR A. Similarly, if the direct product of IR's 1 and 2 
decomposes into the IR's A, then 

NJ, +N,j2=6j~. (4) 
~ 

We generalize Dynkin's index by defining the nth 
order index, n a nonnegative even integer, as the sum 
of nth powers of the magnitudes of the weights of the 
IH-

. f~") = (6 X") . (5) 
x ~ 

The sum is over all weights x belonging to the IR A, each 
occurring a number of times equal to its multiplicity. 
The zeroth order index is just the dimension and in 
Sec. 3 we show that the second order index is just 
Dynkin's index (1), multiplied by the rank of the group. 

In Sec. 2 relations analogous to (3) and (4) are shown 
to hold for certain higher indices, provided that the 
weight diagrams satisfy appropriate symmetry condi
tions. The definition (5) extends readily to semisimple 
groups so that (3) and its analogs for higher indices 
hold also when the subgroup is not simple. 

In Sec. 4 formulas for the fourth order index are de
rived for all the simple groups. 
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Section 5 contains the solution of some reduction 
problems with the help of higher indices as an illustra
tion of their utility. 

2. PROPERTIES OF THE INDICES 

The useful properties of the indices derive from the 
symmetry of the weight diagrams of the simple groups. 
We say that a weight system is rotationally symmetric 
(in I-dimensional weight space) to second order if 

6 x ;=O (6) 

" 
and 

and that it is rotationally symmetric in third order if 

6X;XjXk=O (8) 
x 

and in fourth order if 

v ° .. Ok + ° ·kO. + Ii. Ok 'V 4 L..Jx.x.xx= tJ m '1m ,mJL..JX· 
It 'J k m l(l+2) x' 

(9) 

Xi are the Cartesian coordinates of the weight x. The 
conditions (6-9) would hold for a rotationally symmetric 
distribution. 

The weight diagrams of all simple groups are rota
tionally symmetric to second order, and those of the 
exceptional groups G2 , F 4 , E6 , E70 and EB are rotationally 
symmetric to fourth order. SU(3) weights satisfy (9) 
but not (8). Trivially, SU(2) diagrams are symmetric 
to all orders. We indicate in Sec. 4 how to determine 
which of these conditions hold for a particular group. 

When an IR of a group is reduced according to a 
subgroup, the effect on the weight diagram is a change 
of scale which may be different in different directions 
in weight space. Since the weight diagrams of all simple 
groups are rotationally symmetric in second order, 
the additivity property 

f~2) =P26r,,2) (10) 

" 
follows immediately. The factor P2 can be computed 
from the known scale changes. Equation (10) is just 
Dynkin's relation (3) lthe relation between fA (2) and jA 

is derived in Sec. 3). When the group whose IR is to 
be reduced is rotationally symmetric in fourth order 
lLe. is SU(3) or an exceptional group], f~4) has an 
additivity property like fA (2): 
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1/4)=p4~1,,{4). (11) 

" 
The subgroup is unrestricted. 

Formulas (10). (11) hold equally when the subgroup 
is a direct product of simple groups. The second and 
fourth order indices for a direct product of n simple 
groups are naturally defined as 

(12) 

+2 ~li~)Ii2)INAJNAk) • 
J>k k 

(13) 

In case there is no change in scale in any direction 
under the subgroup reduction a simple additivity proper
ty holds for indices of all orders 

(14) 

Equation (14) holds, for example, for G2 =:; SU(3), F. 
=:; 0(9), E6 =:; SU(3) x SU(3) xSU(3), E7 =:; SU(8), Es =:; 0(16), 
0(2n + 1) =:;0(2n). In some cases where the subgroup is 
a direct product of simple groups the sum of whose 
ranks equals the rank of the original group, Eq. (14) 
holds if the scale of weight space is suitably adjusted 
for the different groups comprising the direct product. 
An example is G2 =:;SU(2)XSU(2). 

We now turn to the additivity properties of the indices 
under reduction of direct products. When !R's 1 and 2 
of a simple group are multiplied, the weights in the 
direct product are x=y +z, where y and z are the 
weights of the respective !R's 1 and 2. 

Hence, if A are the !R's in the direct product, we 
have 

El~2) =~ (y2 + Z2) =N~~2) +Nl~2) (15) 
A YZ 

in agreement with Dynkin's result (4). The fourth order 
index has a similar property: 

6 1!4) =~ (y4 + Z4 + 2y 2z2 + 4(y. Z)2) 
A Y' 

= N211 (4) + N112 (4) + [2(l + 2)/ 1]IF)I~2). (16) 

Equations (15), (16) hold for all simple groups. 

The analogous result for the sixth order index is 

6I!6) = N2I~6) + N,I~6) + (3(1 + 4)/ 1](I~4) IF) + I~2) 1~4»). 
A 

(17) 

In deriving (17) the condition (8) was assumed; accord
ingly, it holds for all Simple groups except 0(6) and 
SU(n) with n>-- 3. 

Provided that (8) and (9) hold, we can deduce a simi
lar relation for 4S ): 

'£f..8) = N r(8) + N l{S) + 4(1 + 6) (1(6) I(2) + 1(2)1(61) 
A A 2"'1 1 2 1 2 1 2 1 

+ 6([+4)(1+6) 1(4)1(4) 
1(1 + 2) 2 1 , 

(18) 

(18) is valid for SU(2) and the exceptional groups. 
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3. THE SECOND ORDER INDEX 

We now relate the second order index 1~2) to Dynkin's 
index (1). The character XI. of the IR A of a simple 
group may be defined as 

XA=(~eX.I').. (19) 

The 1 components <Pi of <P are Cartesian coordinates 
in weight space. The indices may be expressed in 
terms of the character 

Ii 2n )= (~02/0<P7)nXA/ • (20) 
a "=0 

The character may be written4 in terms of the 
characteristic ~)., 

X). :=~J~; 

~A is defined by 

~). =6 (- 1)5 exp(<p. SK).). 
5 

(21) 

(22) 

K). is given by (2); the sum is over Weyl reflections S; 
(- 1)5 is ± 1 according to whether S is even or odd. 
~ in (21) is the characteristic of the scalar IR: 

~ ==6 (- 1)5 exp(<p. SR). (23) 
5 

Using (20), (21), we can write for the second order 
index 

li2) = !... 6 a2~t I _ x). B a2~ I 
~ i a<Pi 1'=0 ~ I a<Pi (/1=0 

_ ~6ax). ~I 
~ i a cP i a <P i 1'=0 • 

From (22), (23) we see ~i02~Ja<p~=Ki~). and 
~i a2~/a<p~ =R2~; hence, USing 

N).=x).llP=o' 
we get 

I!2)=N).(Ki_R2)_ ~E OX).~! • 
~ i 0<Pi a<Pi IP=O 

Expanding X)., Eq. (19), to second degree in <P and 
using (6), (7), we find 

(24) 

(25) 

aX). = ~I(2){n. + higher terms (26) 
a<pj 1). 't"", • 

Weyl has shown' (see Eq. (33)] that the leading term in 
~ is of degree t(r-l) in <Pi hence, by EUler's theorem 
on homogeneous functions, 

!....0 aXA ~I = r-l li2 ). 
~ i a <P i a <P i 1'=0 21 

It follows that 

Ii 2
) = INA (Ki - R 2

)/ r. 

The second order index is just Dynkin's index (1), 
multiplied by the rank I. 

4. FOURTH ORDER INDEX 

(27) 

According to (20) we need the fourth degree term 
xi4

) in the character in order to determine the fourth 
order index. To this end we expand the characteristic 

(28a) 
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(~,.lo is the leading term, of degree i(r- Z) in cp, and 
~?) is of degree p. We may ignore a possible term 
~i3) because it cannot contribute to X~4). Similarly 

~=~O(1+~{2)+~{4)+ •.. ). (28b) 

Then, according to (21), the second and fourth degree 
terms in the character are 

(29) 

X~4) =NJ~~4) _ ~(4) _ ~(2)(~~2) _ ~(2)]. (30) 

We can use (29) to help evaluate ~~2). From (19) and the 
rotational symmetry (7) in second order of the weights 
X, we know that 

xi2
) =I~2) cp2/21 = N).(~ _ R2 )cp2/2r. 

Now Weyl has shown4 that under the substitution 

the characteristic becomes 

~A - n+ sinh ~KA • 0/. 
CII 

(31) 

(32) 

(33) 

The product is over the positive roots 0/. Incidentally, 
(33) illustrates that the degree of the leading term in 
~A (and in ~) is i(r-l), the number of positive roots. 

Expanding ~A and invoking the rotational symmetry 
of d 2

), we find 

(2)_ cp2~. . 2 _ cp2~ ,. 2 

~ A - 24R2 L.: (KA 0/) - 24lR2"c: ex • (34a) 

The last step in (34a) follows from the rotational sym
metry in second order of the roots 0/. Putting K). = R, 
we deduce 

~ (z) = cp2 I> ex2 
24l" . 

Comparing (29), (31), and (34) shows that 

L,+ (}'2 = 12lRz/ r 
" 

and hence that 

~~2) =~cp2/2r, ~(2) =R2 cp2/2r. 

(34b) 

(35) 

(36) 

Weyl4 has given formulas for the characteristics of 
the classical groups. We use them later in this section 
to determine their ~i4) and hence their fourth order 
indices. Because of the rotational symmetry of their 
weight diagrams in fourth order, the exceptional groups 
are actually easier to treat. Hence we deal with them 
first. 

A. Exceptional groups 

Using Eqs. (19) and (9), we find for the fourth degree 
term in the character of an exceptional group 

X~4) =Ii4 )cp4/81(l + 2) 

or, under the substitution (32), 

xi4
) - Ii4

) R 4e4/81(1 + 2). 

(37) 

(38) 

It is straightforward to expand (33) and thus determine 
~i4); ~ (4) is then obtained by putting KA = R. Substituting 
for ~i4" ~(4), ~i2), ~(z) in (30) and comparing with 
(38), we find 
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J!4)= 1+2{1(2)}2_ NAl(I+2) "'+l(K . )4_ (R. )4] 
). N I A 360R4 L; ,a a. 

). a 
(39) 

Because of the rotational symmetry in fourth order of 
the roots ex, we can use (9) to derive 

v. (A )4 _ 3A 
4 ,+ 4 

~ • 0/ - W+2Y';;' ex , (40) 

where A in an arbitrary vector in weight space. Equa
tion (40) can be used to simplify the second term in 
(39). The final result is 

I(4) = l + 2 {I(2)F _ ~{K' _ R4) 6+ ('/4 

, N,l' 120R4 a' 
(41) 

Equation (41) is valid for all five exceptional groups 
G2 , F 4 , E 6 , E 7 , EB and for SU(2) and SU(3). The values of 
L:~ex4 for these seven groups are SU(2): 4, SU(3): 12, 
Gz: 40/3, F 4 : 60, E6: 144, E7: 252, E B: 480. 

B. Symplectic groups 

According to Weyl4 the characteristic of the symplec
tic group Sp(2n) = Cn is 

b=\sinh(ljcp;l{2")\ (42) 

Here laijl means the nXn determinant whose ij element 
is aij' The lj are representation labels. They are 
related to the Cartan labels A j by 

I j = t Ak + n - j + 1 
/<:j 

The Cartan labels are certain components of the 
highest weight, A.k = 2M, . aJ ('/~, where ex k are the 
simple roots. ordered as in Table I of Ref. 5. 

To expand ~). in powers of cp, we first expand 
sinhU/p;l {2") 

(43) 

~,=2-n/z (~liCPi) I ~o 2~~i:i:;)! \. (44) 

Now repeat the following operation n - 1 times, glVmg 
,i in succession the values 1, ... , n - 1. Subtract the ,ith 
column from each column k for which k > j and remove 
a factor (lk - 1;)/2(2j + 1)! from the column k. Omitting 
a factor (Oi=, cp j)l2n2 

/2 O~l (2 ex + 1)! ]-, from ~, (and ~) 
we get finally 

(45) 

where 

._ f- (2,i -1)!p,,(li, .. ., Ij)CP7 j -z.z" 
({ij-~o 2"(2,i+2ex-1)! (46) 

Here p "(E,, ••• , E j) is the symmetric function' of degree 
('/ defined by 

We will need p,,(EI"" ,En) only for QI"", 4. Explicitly, 
these functions are 

po(E)=1, p,(E)=6 E i 
i 

P2(E)=~E~ + L,E;Ej, 
i i)i 
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P3(d=L:E1+2:E~Ej+ .0 E;€/k, (47') 
; ;~j f>J>k 

P4(E)=2:E1 + .0E~.€j + .0E7E; 
; ;U ;>j 

+.0 ~E~Elk + .0 €;ElkEI' 
;*j, k j>k I> J>k>l 

In deriving (46) we used the identity 

= (E - €')POI.-I (E
" 

..• ,E j' E, E'). (48) 

Retaining only the a=O terms in (45), we get 

(~~)o = (~l;) :;/l~ - l;) j <fJ~j-2j. (49) 

From (21) we get the well-known dimension formula 
for Sp(2n),4 

- (n !.i) n (lj -lk)(Zj + lk) (50) 
N~ - ; l~ /i>j (l~ - l~)(l~ + l~) • 

To get the fourth order term ~~4) we must in 
I <fJ~J-21 

1. replace the last column <fJ7n- 2 by 

[16n(n + 1)(2n + 1)(2n + 3)]-'p2(li, ... , l~)<fJr+2, 

2. replace the second last column <fJ~n-4 by 

[16n(n - 1)(2n - 1)(2n + 1)]-'P2(li, ••• , l;_I)<fJ;n, 

3. replace the last column <fJ~n-2 by 

[4n(2n + 1)]-lp, (li, ... , 1;)<fJin and the second last 
column <fJin- 4 by 

L4(n -1)(2n -l)]-'Pl(l~, ••. , l;_1)<fJ~n-2 

and then add the three contributions. 

The result is 

~f4) = l16n(n + 1 )(2n + 1 )(2n + 3 )P2Ui, .•. , I;) 

xP2(<fJi, •• • , <fJ~) + [16n(n -1)(2n - 1)(2n + 1)]-1 

x (El7l;) C~<fJi<fJ;). (51) 

To get (51), we used Weyl's formula 

jElj!=!E;-'!·!h_n+j(Ep ... ,En)! , 
as well as the identity 

P,(Ep ... ,En_,)p,(Ep ... ,En)-P2(E" •.. ,En_,) =2:E;E j • 
;>j 

In a similar manner we find 

~i2) =l4n(2n + 1))-1 (~l;) (~<fJ~). 

(52) 

(53) 

(54) 

<l(4) and <l(2) are obtained from ~~4) and ~~2) by the re
placement l; - l~. Finally we get I~4) by substituting for 
~~4), A (4), ~~2), and A (2) in (30) and applying 1.:; 02/ 0<fJ~. 
The result is 

I(4)-N ((n+5)[p2 CZZ)-P2(CZO)2») 
~ - ~ 4(n + 1)(2n + 1)(2n + 3) 

+ 1.:;>j[(l;l2 - (l~l:W] _ (n + 2)1.:;(m~jflj - (Z'W] ) 
4(2n-1)(2n+1) 2n(2n+1)2 
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(55) 

For If) we get similarly 

1(2) _ N~ ""[l2 (lO)2] 
A - 2 (2n + 1) 'i' I - j • 

C. Orthogonal groups 

(56) 

We turn next to the orthogonal group in an odd number 
of dimensions 0(2n + 1) = En' The formula4 for ~~ is 
the same as for Sp(2n), except that the scale is changed 
in weight space <fJi - .f2 <fJi [<fJ - 2<fJ for 0(3)] and the 
interpretation of the representation labels is different; 
instead of (43) we now have 

n-' 
lj=2:Ak+1An+n-j+1. (57) 

k=j 

Because of the scale change the right-hand side of (55) 
should be multiplied by 4 [16 for 0(3)] and the right
hand side of (56) should be multiplied by 2 [4 for 0(3»). 
The dimension N" is still given by (50) but with the l's 
defined by (57). 

For the rotation group in an even number of dimen
sions, 0(2n) =Dn, the characteristic is given by the 
sum of two nXn determinants4 

~ ~ = 11 coshl J<fJ i ! + 11 sinh I J<fJ; ! 
with 

n-2 
Ij=.0Ak +i(An-, +An)+n-j, 1~j~n-1, 

k=j 

(58) 

(59) 

The second determinant in (58) can be ignored for the 
purpose of calculating second and fourth order indices. 
For 0(6) it contributes to ~ (3) but not to ~ (2) or ~ (4). 

For 0(8) it contributes a term proportional to <fJ , <fJ 2 <fJ 3<fJ4 

to ~ (4) and nothing to ~ (2). For higher even orthogonal 
groups 0(2n) its lowest contribution is to ~ (n), with 
n ~ 5. We do not consider 0(4), since it is not simple 
anyway. 

The determinant icoshll<fJ i I can be expanded just 
as ISinhlJ<fJ;1 was for Sp(2n) and 0(2n+1). For the 
dimension we get Weyl's result4 

N~ = n (11 -lk)(Zj + lk) 
/i>j (l~ - 19)(l~ + 19) 

and for the second and fourth order indices we find 

I~2) = (2n -ltlN~2: (lj + m(lj - tj) 

and 

(60) 

(61) 

1(4) _ N (n + 5)(P2(l2) - P2((l°)2)] + L:j>j((l;lj)2 - (l~l~)2] 
~ - ). (n+1)(2n-1)(2n+1) (2n-1)(2n-3) 

2(n + 2)L:i (l1)2L:1 (zi - (lj)2] 
(2n -1)(2n - 3) 

Formulas (60), (61) are valid for all 0(2n), (62), for 
0(2n), n~ 3. 

D. Special unitary groups 

(62) 

For the special unitary group SU(n) =An_
1 

the char
acteristic is the n x n determinant4 

(63) 
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The representation labels li are given in terms of Cartan 
labels Ai by 

li= 2:xk +n-j 
k=i 

with In=O. The weight space coordinates 1); are not 
independent but satisfy 

61)1=0. 
1 

(64) 

(65) 

They may be expressed in terms of orthogonal coordi
nates qJl: 

n-l 

1) i = - [(i - 1)/i]1 /2qJ i-l + 6[j(j + 1 )]-1/2qJ j, (66) 
j=i 

where qJo=O. The gradient operator may be expressed 
in terms of 1): 

_0_=_ (~)1/2_0_+li(i+1)J-1/2 t~ 
oqJ; t -1 (7);+1 j=i (1)j 

and similarly 

L: ~ = n-1 ~~ _ ~ L: _0_
2
_. 

i OqJj n ; (1)i n i)j (1) j 01)j 
(67) 

The determinant (63) can be expanded in powers of 
7Ji as before by expanding the exponential, subtracting 
columns, and removing factors. After cancelling an 
irrelevant factor from ~A (and from ~) we get 

~A = n Uk -lm) laiJI, 
k<.m 

where 

_ ~ (j -1) IPa(lI' .. ~ i-I+a 
aij-LJ (·-1+)1 7Ji • 

a=o J Ct • 

Wey1's dimension formu1a4 for SU(n) may be written 
down 

NA = n (lj - li)/ (l~ -l~). 
i<j 

(68) 

(69) 

(70) 

The quadratic term ~i2) is a sum of three parts which 
may be denoted by (0,2), (1,1), (2,0). Here (Ctn_1> Ctn ) 

means I aij I with only the O! = 0 term of the expansion 
(69) retained in every column except the last two, where 
only the Ct n_1 and Ct n terms respectively are retained. 
We find for the second order index 

1~2) = NJn(n + 1)]-1 L:l(li _lj)2 - (Z~ - ~)2]. (71) 
i<j 

The quartic term ~i4) is more complicated. It is the 
sum of seventeen terms which we denote by (0004), 
(0013), (0040), (0022), (0031), (0112), (0202), (0400), 
(0130), (1111), (1120), (2011), (2020), (1201), (1300), 
(3001), (4000). Here (Ctn-san_2an_lan) implies the deter
minant I alj I but with only the Ct = 0 term of the expan
sion retained, except for the last four columns, where 
only the a n_3, O!n_2' a,..I' an terms respectively are re
tained. The result for li4

) is 

,(4)_ [() 0)] (n-1)(n
2
+7n-6) () () () (10) (0) (0)] n2+7n-6 

1;' -N). P4(I-P4(1 n2(n+1)(n+2)(n+3) + P41-Pllp31-P4~ +Pl i P3 I n2(n+1)(n+2l 

+ {3[P2(l))2 - 3[Pl (n ]2p2(l) + [PI (l))4 - P4(l) - 3(P2(10)]2 + 3(Pl (IO) ]2P2(lO) -(PI (l0)]4 + P4 (Z0)). ~ 
n 

(72) 

E. Symmetry of weight diagrams 

In this and the preceding section, we have assumed that Eqs. (6), (7) are satisfied by the weight diagrams of all 
simple groups, and that, in addition, Eqs. (8), (9) hold for weight diagrams of the exceptional groups and SU(2). 
Equation (9) also holds for SU(3) diagrams. It remains to indicate how these properties may be verified. 

In subsections B,C,D of this section, expansions of the characteristic~). for the classical groups are obtained 
to terms of degree 4 in rp. The absence of a term ~ ill and the fact that ~!2) is proportional to cp2 proves the 
validity of Eqs. (6), (7) (rotational symmetry to second order) for these groups. The absence of a term ~i3) for the 
symplectic groups Sp(2n) = Cn, the odd orthogonal groups O(2n + 1) = Bn, and the even orthogonal groups O(2n) = Dn 
for n>-- 4 verifies the validity of (8) for those groups. 

The additional symmetries claimed, Eqs. (8), (9) (rotational symmetry to fourth order) for the exceptional 
groups and Eq. (9) for SU(3) may be checked by explicit use of Weyl reflections. We illustrate the procedure for 
F 4 • The point (xu X2 , X3 , x4 ) in weight space is associated under Weyl reflections with the points t(xi - x2 - X3 - x4 ' x 2 

- Xl - X3 - X4, X3 - Xl - x2 - X4, x4 - Xl - x2 - x3) and t(xi + x2 + X3 + X4 , Xl + X2 - X3 - X4 , Xl + X3 - X2 - X4 , Xl + X4 - X2 - x3); each 
of these three points is associated with 4 I 24 - 1 = 383, others being obtained by permuting and reversing signs of 
components (1152 points in all, the member of F4 Weyl reflections). It is easy to verify that Eqs. (6)-(9) hold for 
these points. For E8 , which has over two thirds of a billion Weyl reflections only five essentially different points 
are associated with an arbitrary point; the rest are obtained from them by permutations of components and by 
reversing signs of components in pairs. 

5. EXAMPLES 

The purpose of this section is to illustrate the validity and use of our results. The 2- and 4-indices serve for 
decomposing rather complicated direct products of representations and for finding branching rules. In each case 
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we present two examples. The first one involving A2 is elementary and results of our computation are well known; 
our second example concerning E1 is highly nontrivial. As a third example one can take the content of a separate 
paper (Ref. 5) where some branching rules and Clebsch-Gordan series for Eg are calculated. 

In subsequent examples a reducible representation is determined entirely from equalities of dimensions, 2- and 
4-indices. Practically one needs the values of N, 1(21, and 1(4) for any representation which could be relevant to 
the problem. Each of these quantities is given by an explicit algebraic expression; hence it is easily programmed 
and computed. 

A. Clebsch-Gordan series 

First we decompose the direct product of two representations (11) of A 2 • In order to make our point about equality 
of dimensions and indices 1(2) and 1(4), we arrange the corresponding quantities as followso 

(11) x (11) =:: (22) + (30) + (03) + (11) + (11) + (00) 

N: 64 =:: 27 + 10 + 10 + 8 + 8 + 1 

192 =::108+ 30+ 30+ 12+ 12+ 0 (73) 

1(4): 960 =:: 648 + 132 + 132 + 24 + 24 + 0 

As our second example we decompose a product of three lowest representations of E7 • First consider the product 
of two only. One has 

(0000010) x (0000010) =:: (0000020) + (0000100) + (1000000) + (0000000) 

N: 3136 1463 + 1539 + 133 + 1 

1(2). 9408 4620 + 4536 +252 + 0 
(74) 

1(4): 32256 =:: 16632 + 15120 + 504 + 0 

In order to complete our example, we have to multiply each term in the direct sum in (74) by (0000010). One gets 

(0000010) x (0000020) =:: (0000030) + (0000110) + (1000010) + (0000010) 

N: 81928 =:: 24320 + 51072 + 6480 + 56 

1(2): 381612 =:: 120960 +237888 + 22680 + 84 

1(41. 2113650 =:: 713664 + 1308384 +91476 + 126 

(0000010) x (0000100) =:: (0000110) + (0001000) + (1000010) + (0000001) + (0000010) 

N: 86184 =:: 51072 + 27664 + 6480 + 912 + 56 

1(21. 383292 =::237888 + 120120 +22680 +2520 + 84 

1(4). 2020410 = 1308384 + 612612 + 91476 + 7812 + 126 

(0000010) x (1000000) =:: (1000010) + (0000001) + (0000010) 

N: 7448 = 6480 + 912 + 56 

1(2): 25284 22680 + 2520 + 84 

1(4): 99414 = 91476 + 7812 + 126 

B. Branching rules 

In order to find branching rules (BR), one needs first 
to determine the factors P2 and P4 of (11) and (12) for 
every algebra-subalgebra pair. The most convenient 
is to use the BR for the lowest nontrivial representa
tion which usually is the way that an embedding is 
specified. 

We choose SU(3)::JO(3) as our first example. The 
fact that (10) of A2 contains the representation (2) of 
A, gives 

(10)::J (2) 

N: 3=3 

(75) 

(76) 

(77) 
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TABLE I. Representations of subalgebras AT. E G• At xF4• G2 
x C3• and A 2xA5 contained in the representation (0000010) of 
E T• 

subalgebra representation N [(2) to 
AT (0100000) 28 42 63 

(0000010) 28 42 63 

E6 (l00000) 27 36 48 
(000010) 27 36 48 

2(000000) 2 0 a 
A t xF4 (1) (0001) 52 74 109 

(3) (0000) 4 10 41 

G2x C3 (01) (100) 42 45 50t 
(00) (001) 14 15 19~ 

A2xA5 (00) (00100) 20 30 45 
(10) (10000) 18 27 4~ 
(01) (00001) 18 27 4~ 

(78) 

I(4):~=p •• 8 

Hence P2 = ~ and P. =t. Then for (11) of A2 it holds that 

(11)::J(4) +(2) 

N: 8 =5 +3 

1(2): 12 =P2(20 +4) (79) 

1(·): 24 =p.(136 +8) 

where P2 and P4 are the same as before. 

The lowest representation (0000010) of E7 has 
N = 56, 1(2) = 84, and 1(4) = 126. Let us consider the 
subalgebras A" E6 , A, XF4, G2 X C3 , and A2 XAs' The 
embedding into E7 is specified by their representations 
contained in (0000010) of E7 • Arranging vertically irre-
ducible components of representations of subalgebras, 
one has Table I. From there we find P2 and P4' Thus 
for A" P2=1, p.=l; for E6' P2=~' P4=flj; for A,XF4, 
P2=1, P.=~; for (;;2 XC3' P2=g, P.=~; forA 2xA 5 , 

P2 = 1, P. = 1. For the present example we choose the 
representation (0000020) of E7• It has N= 1463, 1(2) 
=4620, and 1(4) = 16632. Inspecting representations of 
the subalgebras together with their N, 1(2), and 1(4), 
one concludes that only the representations shown in 
Table II satisfy the constraints imposed by equality of 
dimensions and indices. More precisely, for each 
subalgebra the column N must add to the dimension 
1463 of (0000020) of E7, columns 1(2) and 1(4) must give 
4620· P2 and 16632 . P., respectively, where P2 and P4 
were determined above. 

6. REMARKS AND CONCLUSIONS 

It should be remarked that the additivity properties 
of the indices, which are the subject of this paper, 
arise from the similar properties of the character, 
of which the indices are the rotationally symmetric 
moments. 

Under reduction of an IR A of a group with respect to 
a subgroup, each point <P undergoes a linear trans-
formation <P - <P' =p<p, where <P' is the corresponding 
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subgroup point. The matrix of the transformation P 
may be singular (its rank is the rank of the subgroup). 
The character X~ (q:,) contains all information about 
the branching rule: 

X).(4)) - X). (P4» = Xll (4)') =6X" (4)'); (a) 

" 
a similar property holds for direct products: 

d4>)x2(<P) =6Xll(<P), (b) 
I. 

The characters are notoriously difficult to work 
with. Explicit expressions for them do not exist, to 
our knowledge, for the exceptional groups, exceptS for 
G2. The moments of the weights of an IR 

(I~P> .) =( A _2_) (<P) I (c) " ...... p;. . 2<p. X;. 4>=0 
J::;l lj 

together carry the same information as the character. 
This suggests that it may be advantageous to compute 
the low moments of IR' s of the simple groups. To dis
tinguish contragredient IR' s, it is necessary to consider 
at least one odd-dimensional moment. In Sec. 4 all mo
ments up to dimenSion four are given, in essence, for 
all simple groups. For many reduction problems of 
practical interest, they are all that are required. 

TABLE II. Representations of subalgebras AT. E G• At X F 4• G2 
X C3• and A2 x As contained in (0000020) of E 7• 

subalgebra representation N I' 2) I'4) 

A7 (0200000) 336 1120 4256 
(0100010) 720 2240 7840 
(0000020) 336 1120 4256 
(0001000) 70 140 280 
(0000000) 1 0 0 

EG (200000) 351 1008 :3:360 
(100010) 650 1800 5760 
(000020) 351 1008 3:360 

2(100000) 54 72 96 
2(000010) 54 72 96 
3(000000) :l a 0 

A t xF4 (2) (0002) 972 :3240 12744 
(0) (0010) 27:3 504 1176 
(4) (0001) 130 640 4616 
(2) (0001) 78 176 472 
(6) (0000) 7 ::;6 784 
(2) (0000) :1 4 8 

G2 x C3 (02) (200) 567 1404 4212 
(01) (101) 490 1120 30785 
(10) (010) 196 :192 925~ 
(00) (002) 84 216 768 
(oll (010) 98 140 217;\ 
(00) (200) 21 24 36 
(01) (000) 7 4 25 

A2 xA S (00) (00200) 175 600 2400 
(00) (10001) 35 60 120 
(20) (20000) 126 450 1836 
(01) (01000) 45 90 180 
(02) (00002) 126 450 1836 
(10) (00010) 45 90 180 
(10) (10100) 315 990 3420 
(01) (00101) :315 990 3420 
(11) (10001) 280 900 :3240 
(00) (00000) 1 0 0 
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Our interest in the present paper was devoted to the 
indices of representations and their potential use in 
computations. However, the factors P2' P4 , • " are of 
fundamental interest too. Being independent of a partic
ular representation, they characterize the subalgebra 
embedding. In fact, a quantity equivalent to P2' called 
index of subalgebra, has been extensively used in 
classification of subalgebras of the exceptional Lie 
algebras. The P2 alone does not allow to distinguish 
all nonconjugate but isomorphic subalgebras inside 
of the same algebra. It would be of interest to find 
whether or not thus ambiguity is completely eliminated 
by using, for instance, P2' P4' P6' • " for characterizing 
the subalgebras. 
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Conservation of charge and the Einstein-Maxwell field 
equations 

Gregory Walter Horndeski 

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada 
(Received 27 April 1976) 

In a space of four dimensions I determine aU possible second-order vector-tensor field equations which 
are derivable from a variational principle, compatible with the notion of charge conservation and in 
agreement with MaxweU's equations in a flat space. The general solution to this problem contains the 
Einstein-MaxweU field equations (with cosmological term) as a special case. 

1. SECOND-ORDER VECTOR-TENSOR FIELD 
THEORIES 

In Einstein's theory of gravitation, the field equations 
governing the symmetric Lorentzian metric tensor, gab, 
and the antisymmetric electromagnetic field tensor, 
F ab' in regions devoid of sources are 

Gi } - 2 (Fi aF} a - tgi}FabFab) = 0 (1.1) 

and 

Fi}l} =0, (1. 2) 

where Fab is defined by 

(1. 3) 

and i)Ja denotes the vector potential of the electromag
netic field. 1 The above equations are referred to as the 
source-free Einstein-Maxwell field equations. It is 
well known2 that these second-order field equations can 
be derived from a variational principle, in the sense 
that there exists a Lagrange scalar density L of the 
form 

(104) 

which is such that its associated Euler- Lagrange equa
tions,3 Ei}(L) = 0 and Ei(L) = 0, are equivalent to Eqs. 
(1. 1) and (1. 2), respectively, 

Within the context of Einstein's theory when sources 
of the gravitational and electromagnetic field are 
present, Eqs, (10 1) and (1. 2) are modified through the 
addition of 8rrTi } and - 4rrJ i to the right-hand side of 
these equations respectively, where T i } and Ji denote 
the energy-momentum tensor and charge-current 
vector of the sources, Now in general the law of con
servation of charge is equivalent to the demand that 
Ji be divergence-free; i. e., Ji Ii = O. Due to the fact 
that Fi}lji = 0 we see that in the presence of sources 
the Einstein-Maxwell field equations are compatible 
with charge conservation, 

In view of the accuracy to which the law of conserva
tion of charge has been tested in physiCS to date it 
seems reasonable to require that any attempted gen
eralization of the Einstein-Maxwell field equations 
should be consonant with this principle, The problem 
is, do such generalizations exist? More exactly, is 
the Einstein-Maxwell field theory (with cosmological 
term included4) unique among all possible vector-tensor 
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field theories of gravitation and electromagnetism which 
satisfy the following three conditions: 

(a) there exists a Lagrange scalar denSity of the 
form (1. 4) which is such that in the absence of sources 
the field equations are given by Eii(L) = 0 and Ei (L) = 0; 

(b) the source-free field equations are at most of 
second-order in the derivatives of both gil and i)J1 and 
actually do contain terms involving either g iJ. Ilk or i)Ji. Ilk; 

(c) in the presence of sources the field equations as
sume the for m Eij (L) = 8rrvg T i } and Ei (L) = 16rr..fg J i , 

where Ei(L) is such that Ei(L)li =0. 

It is easily seen that the Einstein-Maxwell field 
theory is not uniquely determined by (a), (b), and (c), 
For if L is any Lagrange scalar density of the form 
L =L(gab; F ab ), then its associated Euler-Lagrange 
tensors are given by Eii(L)=oL/ogii and Ei(L) 
= - 2d/d:xi(oL/oFi}). Since E1(L) is a contravariant 
vector density and oL/oFi } is antisymmetric in i and 
j, it is clear that Ei (L) Ii = O. Due to this observation 
we see that it is quite easy to construct vector-tensor 
field theories which satisfy the above three conditions 
and are distinct from the Einstein-Maxwell field theory. 

Now we are all well aware of the success of Maxwell's 
equation, F i

} I'} = 0, in describing the behavior of the 
electromagnetic field in regions which are devoid of 
sources and such that gravitational effects are negligi
ble, Thus it seems necessary to require that any at
tempted modification of the Einstein-Maxwell field 
theory must satisfy conditions (a)- (c) above, along with 

(d) Ei (L) = y -rg F i } Ij when evaluated for a flat metric 
tensor, where y is some nonzero real constant. 

As a result of this last restriction we see that any 
vector-tensor field theory which satisfies conditions 
(a)- (d) will always be consistent with the principle of 
conservation of charge and will be compatible with 
Maxwell's equations in a flat space. 

The purpose of this paper is to prove that in a space 
of four dimensions the Einstein-Maxwell field theory 
(with cosmological term included) is not the only 
vector-tensor field theory of gravitation and electro
magnetism which satisfies conditions (a)-(d), This re
sult will be an immediate consequence of the following 
theorem which we shall establish in the next section. 

Theorem: In a space of four dimensions the most 
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general pair of tensorial concomitants 

A ij =A ii(gab; gab. e; gab. cd;¢a;¢a.b;¢ .. be) 

and 

(1.5a) 

Bi =Bi(gab;gab.c;gab.cd; ZPa;ZP .. b;ZP .. be) (1. 5b) 

(both of which are tensor densities) which satisfy the 
following assumptions: 

(i) there exists a Lagrange scalar density 

(where Q' and [3 are nonnegative integers) of class C~ for 
which 

(ii) BI is divergence-free; i. e. , 

B\I=O; 

and 

(iii) when evaluated for a flat metric 

BI == y.fg Fiili , 

where y is a real constant, is given by 

AIJ·==x.fg eli + T.fg 1i~~~~ gdiFalFelRbe fk 

+ T.fg 1i~~~ gdiFablkpefle 

+ (y /2).fg (Fla Fi a - t g Ii pab F ab) + J.J..fg g I} 

and 

(1. 6) 

(1. 7) 

(1. 8) 

(1. 9) 

(1. 10) 

where X, T, and J.J. are arbitrary real constants. 
Furthermore, a Lagrangian which yields Ali and BI 
as its Euler-Lagrange expressions is 

L ==- A.fg R - (T/2).fg 1i~~~~ FabFefRcakl 

- (y/4).fg pabFab +2J.J..fg. (1. 11) 

Now it is customary to assume that the tensorial con
comitants (and not the field variables) appearing in the 
field equations governing physical field theories are of 
class C~. Consequently, the above theorem provides 
us with the form of the field equations of all vector
tensor field theories of gravitation and electromag
netism which satisfy assumptions (a)- (d). In fact the 
source-free field equations of any such field theory are 
given by A I} = 0 and Bi == 0 for a suitable choice of 
X, T, J.J., and y. Thus, we see that due to the terms with 
coefficient Tin Eqs. (1. 9) and (1. 10) there do exist 
vector-tensor field theories which satisfy conditions 
(a)- (d) and yet are quite distinct from the Einstein
Maxwell field theory (with cosmological term). More
over, it should be noted that the field equations of those 
vector-tensor field theories for which T*O, involve 
a highly nonlinear interaction between the metric tensor 
and the electromagnetic field. 

In Eqs. (1. 9) and (1. 10), X, T, J.J., and yare real 
constants, however, they do not all have the same units. 
If we assume the field variables gli and ZPI are unitless 
(as is customary5), then the local coordinates must have 
units of length, since the line ele ment ds2 = glj dxl dx}, 
has units of length squared. Now when using A Ii and BI 
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to determine vector-tensor field theories of gravita
tion and electromagnetism we plan to set Ali == 81T/g Tii 
and BI == 161T.fg Ji when sources are present. As a 
result A IJ and BI must have units of (lengtht2, since 
TIJ and JI have these units. 5 Due to this observation 
and the above remarks it is apparent that A and y must 
be unitless, whereas T and J.J. must have units of 
(length)2 and (length)-2 respectively. 6 

We shall now proceed with a proof of the theorem. 

2. THE PROOF THE THEOREM 

In this .section we shall give a proof of the theorem 
stated in the Introduction. However, many of the more 
odious details of the proof will be omitted because of 
their length. 7 

Throughout this section Ali and BI will serve to 
denote a pair of tensorial concomitants satisfying the 
hypotheses of the theorem. 

In order to simplify the form of the ensuing expres
sions we shall adopt the following notation: If 

C::: =C:::(gab;gab.e ; gab. cd; ZPa; ZPa.b;ZPa.be) 

is any concomitant, then we define 

"C"· 
c···;ab=~ 

••• ogab' 

C"';a== ac... C"';a.b== ac ... 
••• 0<Pa' ••• o<P .. b ' 

"C'" COD<:I;ab,cd _ _ u_._._. 
••• - ogab.cd ' 

"C'" 
C ••• ·a be U ••• 

•••• '==~. 
a,bc 

If C::: were a tensorial concomitant, then the quantities 
C:::;ab.cd and c:::;a,be would also be tensorial 
concomitants. 

Remark: It should be noted that some of the above 
derivatives of C::: possess various symmetries. For 
example, C::: ;ab.ed = C::: ;ba.ed == C::: ;ab.de. These obvious 
symmetries will be used in the sequel without further 
mention. In addition it should also be noted that due to 
assumption (1. 6), Ali ==AJI. 0 

Lemma 1: The pair of tensorial concomitants Ali and 
Bi must satisfy the following equations: 

Ali Ii + iFI} Bi = 0, 

Ehk(Ali) _ A hk;1j == 0, 

Eh(A Ii) _ Bh;IJ = 0, 

Eh(BI) _ Bh;1 == 0, 

Ehk(BI) _Ahk;i == O. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Proof: If L is a Lagrange scalar density of the form 
L ==L(gab;' " ;gab,i1 ... i ",;<Pa;. " ;<Pa,i1 ... IB)' then the Euler
Lagrange expressions associated with L must satisfy 
the following identity8: 

Eli (L)1j + iF Ii Ei(L) + H i Ei(L) Ii == O. (2.6) 

Equation (2.1) follows immediately from Eq. (2.6), 
since we desire Ali ==Eli(L) and BI =EI(L) for a suitably 
chosen L, and Bi II == O. 

If D::: is any quantity of the form 
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which is an ordinary divergence [i. e., there exists a 
quantity 

which is such that D::: = (d/dxk)F::: k], then9 Eij(D:::) 
and Ei(D:::) vanish identically. to 

Now it is apparent that the Euler-Lagrange tensor 
Eij(L) can be expressed in the form Eii(L)=oL/ogj . 

• J 

+ (d/dxa)F'ia. As a result of this fact and the above 
remarks, Ehk(Ejj(L»=E hk(oL/ogii ). It is easily shown 
that Ehk and O/ogii commute, consequently 

Ehk(.eli(L» __ 0_ Ehk(L)=O. 
oglj 

(2.7) 

Since we desire Aij =Eii(L) for a suitably chosen L 
we see that Eq. (2.7) implies Eq. (2.2). 

Equations (2.3)-(2.5) are established in a similar 
manner.1i 0 

Now the tensorial concomitants Ali and Bi must 
satisfy Eqs. (2.2)-(2.5) in all coordinate systems. 
By examining how the quantities appearing on the left
hand side of these equations transform under a coordi
nate transformation it can be shown7 that the partial 
derivatives of A ij and Bi must satisfy the following 
equations: 

(2.8) 

(2.9) 

AabjCpde ==Bc;ab,de, (2.10) 

2 ~ A ab;c,dj _ A ab;c,d _ Bc;ab,d == 0 
dr ' (2.11) 

(2.12) 

_ Bb;a, c _ Bb; c,a = 0, (2.13) 

where round brackets about a collection of indices 
denotes symmetrization over all of the enclosed indices 
except for those with vertical bars about them. 

Remark: It should be noted that Eq. (2.10) implies 
that Aab is devoid of terms involving second order 
derivatives of iJ!a if and only if B a is independent of 
terms involving second order derivatives of gab. Ll 

We shall now proceed to examine some of the impli
cations of the equation Bh Ih = 0, which, due to the fact 
that Bh is a contravariant vector density, is equivalent 
to Bh,h = O. Upon writing out the latter equation we 
obtain 

Bh;abgab,h + Bh;ab,c gab,ch + Bh;ab,cd gab,cdh 

+ Bh;aiJ!a, h + Bh;a,biJ!a,bh + Bh;a,bc iJ!a,bch = O. (2.14) 

If this equation is now differentiated with respect to 
g,s, tuv and iJ!"stu, we find that 

B(t;l,sl,uv) =0 (2.15) 
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and 

B(s;I,I,tu) = O. (2. 16) 

Due to Eqs. (2.10), (2.12), (2.15), and (2.16) we see 
that 

Aab;(C,de) = 0 (2.17) 

and 

B';( s, tu) = O. (2.18) 

Using Eqs. (2.13), (2.16), and (2.18) it is not difficult 
to show that 

(2, 19) 

and hence 

(2.20) 

To proceed further with our investigation of A Ij and 
Bi it will be necessary to make use of the invariance 
identities satisfied by these quantities. The invariance 
identities which we shall require are given below12 

2 A,s;b( t,uv) glb + A's;( t,uv) iJ!1 = 0, 

B';( s, tU)iJ!1 + 2 B';b!s, tu) glb = O. 

(2.21) 

(2.22) 

Upon combining Eqs. (2.17), (2.18), (2.21), and 
(2.22) we find that 

Ars;w( t, uv) = 0 (2. 23) 

and 

Br;w(s, tu) = O. (2,24) 

Due to Eqs. (2.8) and (2.10) the above equations imply 
that 

Aw(t;lrsl,uv) =0 

and 

Aw(s;lrl, tu) = O. (2.26) 

In order to clearly enunciate the implications of the 
above work we require the following: 

Dejinitiont3 : A "quantity" Qi 1i 2OOoi 2h_1 i2h, ooi ZP_1 i2P (p> 1) 
is said to have property S if: 

(i) it is symmetric in the indices i2h_t, in for 
h=l, ..• ,p; 

(ii) it is symmetric under interchange of the pair of 
indices (i1i 2) with the pair of indices (i2h_1i2h) for 
h=2, ... ,p; 

(iii) it vanishes upon symmetrizing over any three 
of the four indices it. i 2, i 2h_t. i2h , for h = 2, ... ,P. 14 

Lovelock13 has shown that if a quantity has property 
S then any component of that quantity vanishes whenever 
three or more of its indices assume the same numerical 
values. Consequently, in a space of four dimensions, 
any quantity which has property S in ten or more of its 
indices is identically zero, 

Using Eqs. (2.10), (2.15)-(2.18), and (2.23)-(2.26) 
it is not difficult to prove7 

Lemma 2: The partial derivatives of Aab and Ba 

satisfy the following conditions: Aab;cd,ef has property 
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S, A ab;c,de;r,st has property S in the indices 
a,b,d,e,s,t,c,r, Bc;ab,de;r,st has property S in the 
indices a, b,d,e, s, t, c, r, 

Aab;cd, e!;rs, tu = 0, 

Aab;cd,e!;r,st = 0, 

Aab;c,de;r,st;u,vw =::: 0, 

Ba;bc,de;rs,tu= 0, Ba;bc,de;r,st;u,vw == o. 

(2.27) 

(2.28) 

(2.29) 

We shall now employ the above lemma to get a rough 
idea of the functional form of the tensorial concomitants 
Aab and B a• 

Due to Eqs. (2.27) and (2.28) we see that 

(2.30) 

where G hkrstu is a tensorial concomitant of the indicated 
functions which enjoys property S. Integrating Eq. 
(2.30) with respect to grs, tu shows us that 

Ahk_GhkrstUg +Dhk(g.g .,1, ·,1, .,1, ) 
- rs,tu ab, ab,c,'+'a,¥'a,r,,'+'a,bc· (2.31) 

Using the symmetries of Ghkrstu it can be shown that 
Eq. (2.31) may be rewritten as follows: 

(2.32) 

Since Ahk and G hkrstuRrtus are symmetric tensorial con
comitants, D hk must also be a symmetric tensorial con
comitant of the specified functional form. 

Equations (2.29) and (2.32) tell us that 

(2. 33) 

where E hkrstuvlO is a tensorial concomitant of the indi
cated functions and enjoys property S in the indices 
h, k, s, t, v, w, r, u. Upon integrating Eq. (2.33) with re
spect to lJ!r,st and lJ!u,vw it can easily be shown that 

Dhk = l.E hkrstuvw ,I, ,I, +p-hkrst,l, +Q-hk (2.34) 
2 '+'r,st '+'u, VU) '+'r,st , 

where p hkrst and f'Jhk are nontensorial quantities con
structed from gab;g.b,c; z/!a and lJ!.,b' 

Now it is possible to prove that7 

(2.35) 

where eMvr denotes the four-dimensional Levi-Civita 
symbol, and K is a scalar tensorial concomitant of 
gab; g.b, c;z/!a and z/!a,b' 

When Eqs. (2034) and (2.35) are combined we dis
cover that [see Eq. (1. 3)J 

Dhk = (K/;-;g) EhsvrEktwuF F + p-hkrst,l, + Q-hk 
1'5, t uw, v 0/1', st 

and hence 

Dhk = (K/Vf;g) ehSVTektwuF F + P hkrst,!. + Qhk 
rslt uwlv <fr,st , 

where phkrst and Qhk are concomitants of g.b;gab,c;l/I. 

and I/I.,b' In addition it should be noted that phkrst can 
be chosen to be symmetric in s and t. 

Upon differentiating Eq. (2.36) with respect to I/Ir,8t' 

we find that P hkrst must be a tensorial concomitant. 
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Due to Eqs. (2.32) and (2.36) we have shown that15 

Ahk =~Ghkr8tu R rtus + K./g 6~~:'t g lkFrsl tF uW 1v 

+ P hkr8tlJ!T, st + Qhk, (2.37) 

where G hkTStU, K, and P hkrst are tensorial concomitants 
of g.b;gab,c;l/Ia and lJ!a,b' while (for the present) Qhk is 
simply a symmetric concomitant of these same 
arguments. 

In a similar manner it can be demonstrated that7 

Bh = 2K./g 6~~tF wUlvRrs kt + tHh}kstRsJkt + M\ (2.38) 

where Hhjkst and Mh are tensorial concomitants of the 
form 

and 

Mh = Mh(gab; g.b,c;l/Ia;lJ!a,b;lJ!a,bc), 

and K is the same scalar concomitant as the one appear
ing in Eq. (2.37). In addition, Hhlkst has property S in 
the indices j, k, s, t. 

Remark: It must be noted that if A"k and Bn satisfy 
the assumptions of our theorem then they are necessari
ly expressible in the form (2.37) and (2.38) for some 
choice of G''', K, P··', Q", S'.', and M·. However, 
that does not imply that any pair of tensoriai con
comitants of the form (2.37) and (2.38) satisfies the 
assumptions of our theorem. o 

We shall now derive a few lemmas which will help us 
to construct the various concomitants appearing in 
Eqs. (2.37) and (2.38). 

Lemma 3: The tensorial concomitants Ahk and B" are 
such that 

(2.39) 

and 

Bh;T,S + Bh;s, r = o. (2.40) 

Proof: Due to our previous work, equation B", h "= 0 
can be written as follows: 

Bh;ab g +Bh;ab,c CT + Bh;a,l, + Bh;.,b,l, - 0 
ab,h bab,ch Ifa,h "t'a,bh- • 

(2.41) 

Upon differentiating this equation with respect to lJ!r .t, 

we obtain ' 

Bh;r,st;ab gab, h + Bh;r, st;al1,c gab,eh + sh;r, 8t;'I/I., h 

+ Bh;r,st;a,bz/!.,bh + t(B8;r, t + Bt;r,s) = 0, 

or equivalently 

2 A Bh;r,st +Bs;r,t + Bt;r,s = o. 
dx 

Combining this equation with Eq. (2.20) shows us that 

and hence we may employ Eq. (2.19) to conclude that 

as desired. 
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In an analogous manner7 we can use Eqs. (2,10), 
(2,11), (2.15), and (2,41) to establish Eq. (2.39), 0 

Lemma 4: The tensorial concomitants Ahk and Bh are 
independent of <P .. i. e. , 

(2. 42a) 

and 

(2. 42b) 

Proof: Equation (2.4) tells us that 

d 2 d 0- --- Bi;h,lm __ Bi;h,1 +Bi;h_Bh;i 
- dxl dx m dx l 

We may use Eq. (2.16) to rewrite the above equation 
as follows: 

d2 d 
O 2 B I;h,mi __ Bi;h'!+Bi;h_Bh;i 

= - dx! dx m dx l (2.43) 

USing Eq. (2.20) to replace - 2(d2ldxl dx m) Br;h, mi in 
Eq. (2.43), we find that 

(2.44) 

where we have employed Eq. (2.40) to conclude that 

If we now differentiate Eq. (2.41) with respect to 
1/!i,r we see that 

d . . 
0=- Bh;.,r+Br ;. 

dxh (2,45) 

Upon combining Eqs, (2.44) and (2.45) we discover 
that Bi;h vanishes as deSired. 

We shall now prove Eq. (2.42a). To begin with, 
equation (2.5) implies that 

Due to Eq. (2.15) we may rewrite the above equation 
as follows: 

d 2 d 
O 2 B m;hk,li - dx

l 
Bi;hk,1 +Bi;hk_Ahk;i. 

=- dx1dx m 

(2.46) 

Upon differentiating Eq. (2.41) with respect to grs, tu 

and grs, t we find that 

and 

~ Bh;rs, t + Bt;rs = O. 
dx 

(2. 47a) 

(2. 47b) 

Using Eq. (2. 47a) we see that Eq. (2.46) can be re
written as follows: 

o=~ B1;hk,i+Bi;hk_Ahk;i. (2.48) 
dx 

Equations (2. 47b) and (2.48) imply that AM;i =: O. 0 

We shall presently employ Lemmas 3 and 4 to prove 
that the tensorial concomitants P hkrst and Hrhkst oc-
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curring in equations (2.37) and (2.38) must vanish. 
However, in order to do so we shall require the follow
ing technical result. 7 

Lemma 5: In a space of dimension n, any tensorial 
concomitant cpil"'iq (q ~ 0) of the form cpijoo'iq=cpij."i q 

(gab; gab,c;<Pa,b) is independent of gab, c and such that 
cf>it .... iq:a,b == _ cpi1",oiq;b,a. 

In particular, if n is even and q is odd then cpit· .. 
i
• 

vanishes. 16 

We are now in a pOSition to prove 

Lemma 6: If the pair of tensorial concomitants Ahk 

and Bh satisfy the assumptions of the theorem, then they 
must necessarily be expressible as follows: 

A hk =tehkrstu R rtus + KVg 15:~~t g!kFrs It FUwlv + Qhk, 

B
h
=2Kvg o'::.1ttpwulvRj/t +M\ 

where 

(2.49) 

(2.50) 

(a) e hkrstu, K, and Qhk are tensorial concomitants of 
gab and <Pa,b; 

(b) Mh is a tensorial concomitant of gab;gab,c;<Pa,b and 
lPa• bc ; 

(c) G hkrstu has property 5 and Qhk is symmetric. 

Proof: Due to Lemma 4 it is an elementary matter 
to prove that the tensorial concomitants eMrstu, K, 

P hkrst, H rhkst, and Mh appearing in Eqs. (2.37) and 
(2.38) are independent of <Pa. Thus we may now use 
Lemma 5 to deduce that 

(i) G hkrstu and K are tensorial concomitants of gab and 

<Pa, b; 

(ii) P hkrst and W hkst vanish. 

As a result of (ii), Eqs. (2.37) and (2.38) now assume 
the form (2.49) and (2.50), respectively. 

Since phkrst vanishes in Eq. (2.37), Qhk must be a 
tensorial concomitant. Thus we may once again apply 
Lemma 4 to Eq. (2.37) to deduce that Qhk is independent 
of <Pa. Consequently Lemma 5 may be invoked to conclude 
that Qhk is a concomitant of gab and 1/!a,b' 0 

Using many of our previous results it can be shown7 

that the scalar concomitant K appearing in Eqs. (2.49) 
and (2.50) must be a real constant and that 

hkrstu 1 {K F F c } G = vg 2 aC b + mgab 

x [EhrtaEksu!> + EhruaEkstb + EkstaEkrub + EhsuaEkrtb], (2. 51) 

where m is a real constant. 

Upon combining Lemma 6 with Eq. (2.51) and the 
fact that K is a real constant we easily obtain 

Lemma 7: Any pair of tensorial concomitants A hk and 
Bh satisfying the assumptions of the theorem must be 
expressible in the following fashion: 

Ahk = \vg C hk + r-Ig o:~~~gdkFal F elRbciJ 

(2.52) 
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and 

(2 0 53) 

where ,\ and T are real constants. Furthermore, Qhk 
(= Qkh) and Mh are tensorial concomitants of the follow
ing form: 

Qhk = Qhk(gabi1J!a,b) 

and 

Mh = M h
(gabigab,ci1J!a,b;1J!a,bc)' 

It is well known that the term with coefficient ,\ in 
Eq. (2.52) is an Euler-Lagrange tensor; in fact 

(2.54) 

The purpose of our next lemma is to show that the terms 
with coefficient Tin Eqs. (2.52) and (2.53) are also 
Euler-Lagrange tensorso 

Lemma 8: The Euler-Lagrange tensors of the 
Lagrange scalar density 

L = - (T/2) vg o~V::i'm FtvF wu Rab lm 

are giv.en by 

and 

Ehl (L) = T vg o:~~~ gdl F al F el Rb/k 

+ Tvg o:~~ gdl FablkFeflc, 

Proof: We begin by computing EI(L). 

(2.55) 

(2.56) 

(2.57) 

Under the present circumstances EI (L) is given by 
EI(L)=- (d/dxJ)VI,J. Since L is a scalar density and 
L ;1, J = _ L; J, I, our expression for EI (L) can be rewritten 
as follows: 

Ei (L) = _ L;i,J Ij • 

Using Eq. (2.55) we easily find that 

L ;i,J - 2T ~g olJab FwuR 1m 
- - V f! wu:~m ab. 

Due to Eqs. (2.58), (2.59), and the fact that 
Oij:/~ Rablmlj vanishes identically (in view of the 
Bianchi identity), we see that 

as claimed. 

We shall now proceed to compute Ehi(L). 

(2058) 

(2.59) 

Rund17 has shown that under the present assumptions 
on the form of L, Ehi(L) can be expressed as follOWS: 

Ehl (L) = L;hi,jkljk _ L;rs, hk Rrl ks 

+tL;rs,ikR/kS + ~ghiL _ ~L;r,hFr i. 

Using Eq. (2.55), it is not difficult to show that 

L;hi,ik = _ (T/2) vg{o~v~~ F tv F wu glkgmi 

+ otvhk F Fwugligml} 
wulm tv • 

(2.60) 

(2.61) 

Upon combining Eqso (2.59)-(2.61) we find, after a 
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lengthy calculation, that7 

Ehl(L) = Tvg o:i'!~i gdl Fal FelRb/ k 

+ Tvg o~:~i gdl FablkFeflC 

- tTvg Il~:r!. gel F ab FfkRcalm. (2.62) 

Since we are working in a space of four dimensions, 
Il~Zr!. vanishes identically and consequently Eq. (2.62) 
reduces to Eq. (2.56). 0 

Our next lemma provides us with a partial converse 
to Lemma-7. 

Lemma 9: Any pair of tensorial concomitants ahl and 
b l of the form 

ahi =,\ vg G hi + T vg o~~J gdl Fal F el Rb/J 

+ Tvg o~~j gdiFabljFeflc, (2.63) 

(2.64) 

where ,\ and T are arbitrary real constants, satisfy the 
assumptions of the theorem. 

Proof: Owing to Eq. (2.54) and Lemma 8 it is appar
ent that ahi and bl satisfy all of the assumptions of our 
theorem except perhaps the second [viz., Eq. (10 7)]. We 
shall now show that this condition is also met. 

Due to Eqs. (2057) and (2.64) we have 

I d.· . 
b =- -. L",J 

dx' ' 
(2.65) 

where L is given by Eq. (2 055). Since b i is a contra
variant vector density bl II =dbl /dxi , and hence we may 
use Eq. (2065) to conclude that 

b l d2 'I J 
Il == - dx1dxi L' , . (2.66) 

Upon combining Eq. (2.66) with the fact that L;I,J 
= - L;J,I [see Eq. (2.59)] we find that bl Ii vanishes as 
required. 0 

Remark: Due to the above lemma it is clear that the 
tensorial concomitant ~ appearing in Lemma 7 must 
be divergence-free. ,0 

Our proof of the theorem will follow immediately 
from Lemmas 7 and 9 once the following result is 
establishedo 

Lemma 10: If Ahl =Ahl (gab;1J!a, b) and BI 

==B I(gab;gab,c;1J!a,b;1J!a,bcl are tensor densities which 
satisfy assumptions (i), (ii), and (iii) of the theorem, 
then 

Ahi = (y/2) vg (FhaF ia - t ghiFabF ab) + JJ.,;g ghi, 

and 

Bi =yVg Fiji}' 

where JJ. is some real constant. Moreover, a 
Lagrangian which yields Ahl and BI as its Euler
Lagrange expressions is 

L=-(y/4)VgF abF ab +2JJ. Vg. 

Proof: Due to Eq. (2.11) we know thatAab;c,d 
= - Bc;ab,d, and hence Bc;r,st;ab,d = O. As a result of 
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this fact the tensorial concomitant Bi ;r,st must be in
dependent of gab,e' 

Since we desire Bi = I' fg F Ii Ii' when evaluated for 
a flat metric, we must have B!;r,st,u,vw and BI;r,st;u,v 

equal to zero when evaluated for a flat metric. Upon 
combining this observation with the fact that Bi ;r,st is 
always independent of gab e we may now conclude that 
B!;r,.t is a concomitant of only gab' Consequently, there 
exists a tensorial concomitant p!rst = p!rst(gab) which 
is such that 

Bi; T, st == cf>iTst • (2.67) 

Due to Eq. (2.67) and (2.22) we see that plTst has the 
following symmetries: 

pir.t = plrts and pi(rst) = O. 

USing the results of McKiernani8 it is now easy to prove 
that 

p!rst = a {g (g!r gst _ i(glS grt + git grs», 

where a is some real constant. 

(2.68) 

Upon integrating Eq. (2.67) with the aid of Eq. (2.68) 
we find (through the use of Lemma 5) that 

Bi=aVgFiJ 1J 

and hence a =1'. 

Now it is easily seen that if 

L = - (1'/4) vg FabFab , (2.69) 

then Ei (L) = Bi. However, this does not imply that the 
Ahl corresponding to Bi need be E hi (L). What we can 
say though is that if L =L(gab;'" ; gab,it ... i",;<Pa;' .. ; 
<Pa, it ••• if) is a Lagrange scalar density which is such 
that Eh (L) =Ahi and E i(L) =Bi, then Ei(L - L) = O. Con
sequently, we may employ Eq. (2.6) to deduce that 
E hi (L - L) I i = O. Since E hi (L - L) is a concomitant of 
only gab and <Pa,b we can now use a result of Lovelock'si9 
to deduce that Ehi (L - L) = Jl-ig ghi, where Jl is some 
real constant. Upon combining this fact with Eq. (2.69) 
and the fact that E hi (L) =Ahi, we find that 

A hi = (I' {g/2)(F haFi a - t ghiFab F ab) + Jl vg ghi. 

Since Ehi(2Jlfg)=Jlvgghi, and E i (2Jl{g)=0, our proof 
of Lemma 10 is now complete. 0 

Due to Lemmas 7, 9, and 10 our proof of the theorem 
is finally finished. 0 

At this time I would like to point out that owing to 
Lemmas 7 and 9 we can conclude that any pair of 
tensorial concomitants Ahk and Bh of the form (1. 5a) 
and (1. 5b), which satisfy assumptions (i) and (ii) of 
the theorem must be expressible in the form 

and 

Ahk=XVg C hk + Tvg o~JJ gdkFarFezRb/J 

+TVg o~jgdkFabIJFefle+Qhk 

Bh = 2TVg o:;:'~J FdelaRb/J + M\ 

for some choice of real constants X and To Furthermore, 
Qhk and ;Uh must be tensorial concomitants of the 
form Qhk = Qhk(gab; <Pa,b) and Mh = Mh(gab; gab,e; <Pa, b; <Pa,be) 
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which are such that Qhk = E hk(L) and Mh = E h(L) for 
some Lagrange scalar density L of the form (1. 4). 
Now I presently believe that the Lagrangian L which 
yields Qhk and Mh as its Euler-Lagrange expressions 
must be equivalent to a Lagrange scalar density L of 
the form L = L (gab; F ab), in the sense that Ehk(L) 
= E hk(L) and E h(L) = E h(L). However, so far I have not 
been able to either prove or disprove this conjecture. 
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lThroughout this paper small Latin indices may assume the 
values 1 to 4 and obey the summation convention. Indices 
will be lowered and raised by means of gil and its (matrix) 
inverse giJ respectively, and g will denote I detglJ I • A partial 
derivative with respect to the local coordinate xi (say) will 
be indicated by a subscript i preceded by a comma; whereas 
a covariant derivative with respect to the Christoffel connec
tion built from gab in the direction a/ax l will be denoted by a 
subscript i preceded by a vertical bar. The curvature tensor 
R bed is defined in accordance with Vb

1ed - V\lc= V"Rabed' where 
V% is an arbitrary contravariant vector field. The Ricci 
tensor, curvature scalar, and Einstein tensor are defined 
by RiJ=RiaJa' R=I.JR!J' and Gij=R!l-~giJR, respectively. 
The symbol til;::.!' will be used to denote the p xp generalized 
Kronecker delta. tastly, geometrized units will be used, in 
terms of which c = G = I, and the line element ds2 = gil dx! dxl , 
has units of length squared. 

2See, for example, H. Rund, Abh. Math. Sem. Univ. Ham
burg 29, 243 (1966); or S. W. Hawking and G. F.R. Ellis, 
The Large Scale Structure of Space-Time (Cambridge U. P., 
London, 1973). 

3If L is a Lagrange scalar density of the form (1. 4), then its 
Euler-Lagrange tensors are given by 

EiJ(L)= t (-1)" d". ( BL ), 
,,=0 dx i

1. •• dx'" ag!J,il"'i" 

and 

Ei(L)=t(-I)" I d" I ( . aL ) 
,,"0 dx I .. ·dx" al/!i,il"'i" 

Eil(L) is obtained from L through a variation of gil holding 
I/!i (and its derivatives) fixed; while Ei(L) is obtained from 
L through a variation of I/!i holding gil (and its derivatives) 
fixed. 

4The field equations of the Einstein-Maxwell field theory with 
cosmological term included are obtained from the Einstein
Maxwell field equations by adding Agij to the left-hand side 
of the first set of the Ei.nstein-Maxwell field equati.ons, and 
leaving the second set unaltered, where A is the so-called 
"cosmological constant." 

5See, for example, Chapter 17 of C. W. Misner, K. S. Thorne, 
and J. A. Wheeler, Gravitation (Freeman, San Francisco, 
1973). 

6For more information concerning the use of units in deter
mining the field equations of physical field theories see 
S. Aldersley, "Dimensional Analysis in Relativistic Gravita
tional Theories," submitted for publication. 

7The details omitted from this section may be found in G. W. 
Horndeski, "A Theorem on Second-Order Vector-Tensor 
Field Theories," (unpublished), preprint available from the 
Department of Applied Mathematics of the University of 
Waterloo, Waterloo, Ontario. 

8A proof of this identity may be found in G. W. Horndeski, 
"Tensorial Concomitants of Relative Tensors, Affine 
Connections and their Derivatives of Arbitrary Order," 
(unpublished), preprint available from the Department of 
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Applied Mathematics of the University of Waterloo, Waterloo, 
Ontario. 

91f D::: is any concomitant of gab' 1f!a. and their derivatives 
(of some finite order), then we define EIJW:::) and EIW:::} 
as follows: 

EiJ(D"')z ~ (_ HU. . d"" (aD:::) 
... LJ dx'l •• ·dxlU. a ' 

.. =0 gjj,ij''''" 

and 

EiW''') '" ; (-1)" d" (ew:::) . 
,., LJ dxi l'" dxl " (1» ",0 1,11"'1" 

Since D::: is of finite order in the derivatives of gab and 1/J", 
the above infinite series have only a finite number of non
zero terms. 

lOSee Theorem 3 in D. Lovelock, J. Aust. Math. Soc. 14, 
482 (1972). 

lIFor more information on the operators introduced in Eqs. 
(2.2)-(2.5) see G. W. Horndeski, Tensor N. S. 28, 303 
(1974). 
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I2These results are derived in Ref. 8 above and are also given 
in G. W. Horndeski, utilitas Mathematica 9, 3 (1976). 

13D. Lovelock, Aequationes Math. 4, 127 (1970). 
14In what follows, I shall often say things like "the quantity 

CabClSef has property S in the indices a,h,c .I.d.e." By that 
I mean that the quantity ;pabcfde defined by ;pabcfde = c;a«:def has 
property s. 

15Since we are dealing·with a metric whose signature is 
Lorentzian E°bc4gaJ%bqf!dSds = - gEpqrs' where (recall that) 
g=ldetgIJ1, and hence-g=detg/j' 

16The first sentence in the statement of Lemma 5 is due to 
D. Lovelock. See. Appendix 9 of D. Lovelock. "Mathematical 
Aspects of Variational Principles in the General Theory of 
RelatiVity" (unpublished D.Sc. thesis, University of Natal, 
South Africa, 1973). 

17H. Rund, Abh. Math. Sem. Univ. Hamburg 29, 243 (1966). 
18M. A. McKiernan, Demonstratio Math. 6, 253 (] 973). 
lSD. Lovelock, Lett. Nuovo Cimento 10, 581 (1974). 
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An operational calculus is set up with the specific aim of resolving the problem of the integral of 
functionals in a general complex Banach algebra. The functionals that occur frequently in physics are 
Feynman's path integrals for quantum mechanics which usually appear in the form of an exponential of an 
integral. Through the establishment of two operations, the r differentiation and p integration, we succeed 
in constructing a formula, in closed form, for the integrals of Feynman type functionals. Applications to 
known problems (quantum harmonic oscillator, the electron-phonon system) corroborate conventional 
results. This formula is found to be at once consistent and more general than the method of projection into 
cylinder functionals of Frederichs type. It does not require an additive Gaussian measure, and it admits 
integration with finite limit functions. The methodology developed is general and applicable to other 
branches of mathematics. It is particularly suited to the study of infinitely divisible distributions in 
probability theory. We rederive, with facility, Levy's formulas for continuous sums, and Levy-Khintchine 
and Kolmogorov formulas. We also find it applicable to continuum' matrix algebra, where the formula for 
the determinant of matrices of continuous indices is given as a p integral. As to algebraic identities, we 
give a continuum version of the binary expansion, and retrieve Stirling's formula of factorials by p 
integration. The idee-clef lies in the concept of infinitesimal ratio of a function in the same way that 
differential calculus deals with infinitesimal differences. Then the functional integral appears to be a natural 
product of the interaction between the conventional integration and the proposed p integration. It also 
heralds the possibility of a generalized measure theory for integrals where the basic operation between the 
measure and the integrand is not bilinear. 

I. INTRODUCTION 

The Feynman formulation of quantum mec hanics 
mathematically involves an integral of a functional. 1 

Specifically, the action of the system is defined in 
terms of its Lagrangian, L(i,x, t), 

S[b, a] = Jt;b L(i, x, f), (1. 1) 

where x(t) is the trajectory, x(t) the velocity, t the 
time, for a point in the phase space. The propagator is 
then given2 as the "sum over all paths," x(t), of con
tributions from S[b,a], 

K(b, a) = Jab f)x(t). exp(i/If)S[b , a]. (1. 2) 

This is a functional integral, the evaluation of which 
was usually carried out by expanding (1. 2) into an n
fold integral, then taking the limit of the result as 
n - "". Several versions of the expansion have been 
proposed: the P projection method, 3 the Fourier series 
expansion,4 the central moment expansion, 5 etc., with 
varying degree of effectiveness. However, most meth
ods will break down upon deleting the Gaussian mea
sure which is subsumed in all cases. The theoretical 
study of the functional integrals so far also suffers from 
the fundamental difficulty of establishing a satisfactory 
measure from conventional theory for the integration in 
a general Hilbert space. 6 

Therefore, the present investigation purports to put 
forward an operational calCUlUS, called the continuum 
calculus, through which the integrals of a definite 
class of functionals frequently encountered in quantum 
mechanics as Feynman path integrals can be uniquely 
characterized and evaluated in closed form; thereby 
the expansion into cylinder functionals, a useful but 
cumbersome approach, is entirely circumvented. This 
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characterization is found to be independent of the as
sumption of Gaussian measures and admissible of 
finite limits of integration, Thus it is more general than 
the expansion methods proposed so far. 

The continuum calculus consists essentially of two 
operations, the r differentiation and the p integration. 
It studies the rules of operation and properties of the 
operators, R/ Rt( . ) and Pdt:» ( . ), to be specified later. 
The theory is an independent subject of study in itself, 
and can be shown to have applications in other branches 
of mathematics as well. 

A step- by- step construction for the r differentiation 
and p integration is carried out in Secs. II and III. They 
are shown to be closely related to the ordinary differ
entiation and integration through two important corre
spondence theorems. Heuristically, the r differentia
tion studies the behavior of the instantaneous ratio of a 
function f(t) in the immediate neighborhood of point t in 
the same way that the ordinary differentiation is con
cerned with the instantaneous difference of a function. 
The P integration is then recognized as the "inverse" 
operation, in a loose sense of the term, of the y 

differentiation. 

In Sec. N, we apply the P integration method to alge
bra. A version of the Stirling formula for factorials is 
recovered. Section V witnesses the application of the 
P integrals to the probability theory of distributions of 
sums of random variables. 7 We rederive the formulas 
of Levy8 for "continuous" sums with much ease, and 
examine from a new perspective the characteristic 
functions of infinitely divisible distributions. 

Through the operator approach we are able to set up 
in Sec. VI the definition of the integral of a class of 
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functionals that admit an exponential integral represen
tation. The p integral plays a large role in this defini
tion. The proof of the consistency of the new definition 
with conventional results is then taken on as the major 
task in the subsequent sections (Vm, IX). We are able 
to demonstrate this for functional integrals studied 
variously by Frederichs,3 Feynman and Hibbs, 2 Abe, 9 

Montroll,10 Brush, 11 Cameron and Martin, 12 and 
Morette,13 etc., in physics as well as in mathematics. 
Furthermore, the present method sheds light on other 
aspects of the functional integral, eo g., the evaluation 
of the normalization constant for a Feynman path in
tegral, an interesting and intriguing question. Sections 
vm and IX take up the cases of quantum harmonic 
oscillators and the electron-phonon system after a 
brief survey of the continuum matrix algebra in Sec. 
VIT. 

We indicate possible developments in Sec. X. Fur
thermore, a heuristic discussion is entertained on the 
generalization of the integral formula to cover a wider 
class of integral representations of functionals. 

II. THE METHOD OF r DIFFERENTIATION 

In this section we establish a noval type of differen
tialoperator, denoted by R/Rt, on a certain class of 
functions. Let f be a function (or a form) mapping a 
complex Banach space B into its base field, C, of com
plex numbers, f:B - C. Let NcB be the kernel of the 
mapping f, and II bll the norm of b E B. We propose the 
following definition. 

2.1. Definition: the r derivative: Let CB be the set 
of functions from B to C. The operator R/Rt takes a 
functionfE C B and yields a functionf* E C B which 
satisfies the following condition: For any e> 0, and t 
not in the closure of kernel N, there exists a Ii such 
that 

iJ(t+b)-f(t)[f*(t) lIbI1 1\ <e 

whenev~r II bll < Ii. If such anf* exists at the point 
t E B - N, we denote it by 

!!1 (t) = f* (t) 
Rt 

(2.1) 

(2.2) 

and call it the r derivative of f at t. f is called r differ
entiable at t; the operation is called r differentiation. 
(Or for brevity, rationative, rationable, and rationa
tion, respectively, for reasons to be specified later). 

We note that since t is not in N, fit) * O. There exists 
a neighborhood V of t, such that the image f(V) does not 
contain !.he origin O. When f is r differentiable on a set 
E r;;; B - N, f is differentiable at each point tEE. Higher 
r derivatives can be obtained recursively by repeated 
applications of definition (2.1). 

The r derivative, Rf/Rf, bears a close relationship 
to the ordinary derivative, df/ dt, of a function fit). In 
fact a one-to-one correspondence can be established, 
as will be seen later. We examine now the algebraic 
properties of the operation R/Rf. First, the function 
set, CB, can be made into a Banach algebra14 AB by the 
usual construction. Addition and scalar multiplication 
are given by (Qf+(3g)(t)=.Qf(t)+(3g(t), '" f,gEC B, 
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t E B, and Q, (3 E C. Multiplication is defined as (fg)(t) 
=. f(t)g(t) , and (afg)(t) =. (f( Qg»(t) =. Qf(t)g(t), The function 
fo (f) =. 0, is the zero function, and f1 (t) =. 1 the unit of 
multiplication. The space C B can then be completed by 
incorporating all the ideal elements with a given norm, 
which is left undefined at this moment. Then we show 
that R/Rt is distributive with respect to the product of 
elements of A B , and homogeneous with respect to ex
ponentiation by a scalar. 

2.2 Lemma: distributivity of R/Rt: The operator 
R/Rt is distributive with respect to the product of ele
ments of A B • 

Proof: The definition 2. 1 can be written in a mOre 
transparent form, 

B.. _. \f(t+b)11 / I1bll 
Rt fit) - hm f(t\ , 

IIbll~O I 
(2.3) 

since fit) * O. For r differentiable f, and g E A B, and t 
not in the union of the closures of the kernels, NI UN" 
offandg, 

B.. (fg)(t)= lim If(f+b)g(t+b) Illbll~1 
Rt IIbll~O f(t)g(t) 

. If(t+b)llIbll~1 . Ig(t+b)llIbll~1 
= hm --- hm 

IIbll~O fit) IIbll~O g(t) 

R R 
= Rt f(t) Rt g(t). (2.4) 

2.3 Lemma: the homogeneity of R/Rt with respect to 
scalar exponentiation: The exponentiation by a scalar 
for fE AB can be defined conventionally. Then 

B.. (f(t)") =(B.. f(t») " Rt Rt· (2.5) 

We omit the proof, which is straightforward. The dis
tributivity can be extended to products of more than 
two factors by mathematical induction. We examine 
some examples. If f is a constant function, f(t) =. a, 
we have 

R \ a IlIbll-1 

- f(t) = lim - =1, 
Rt IIbll~O a 

(2.6) 

f*(t) =ft (t), the unit of multiplication. If fit) = exp(t), 
for t real, 

B.. fit) = lim I exp(t+ b) Ilbl-
1 
=e. (2.7) 

Rt Ib I~O exp(t) 

If fit) = tn, t real, 

R . I (t + b)n \lbl-
1 

Rt fit) = hm -t-n-
Ibl-O 

= lim \ 1 + (n/t) + O(b2 ) Ilwl 
= exp(n/t). 

IbH 
(2.8) 

In the following we prove the important theorem linking 
the r derivative with the ordinary derivative, which 
establishes the existence of Rf/Rt, whenever df/dt 
exists, 

2.4 Theorem: the correspondence theorem of r 
differen!jation: A function, fEAB' is r differentiable on 
E r;;; B - N if and only if f is differentiable on E in the 
ordinary sense. And the derivative Rf/Rt is given by 
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:t f(t) = exp(~ lnf(t»). (2.9) 

Proof: We prove the second part of the theorem first. 
Since f is differentiable, we can expand f(t) into Taylor's 
series, at least to the first order, 

f(t + b) = f(t) + f'(t)b + O(b2
), (2.10) 

wherej'(t)=df/dt. Substitution of (2.10) into the alterna
tive definition (2.3) for Rf/Rt, gives 

R . If(t+b) /11011-1 • I f'(t) /111111-
1 

Rtf(t) = 11m -1ft) = 11m 1 + 1ft) b + O(b2
) 

11011-0 11011-0 

(
fl(t») (d \ = exp f(t) = exp dt lnf(t);. (2.11) 

Therefore, RI/Rt exists and is given by (2.11). This 
proves the sufficiency. The necessity part is proved 
easily from ordinary analysis15 by noting that In(· ) is 
differentiable, and the differentiability of the composi-
tion of differentiable functions. QED 

This interesting theorem translates equally between 
the ordinary derivative, dt/dt, and r derivative, Rf/Rt, 
of a function. The examples considered previously can 
be easily demonstrated by this new relationship. If 
f(t)=a, dln(a)/dt=O; therefore, Rf/Rt=exp(O)=l. If 
now f(t) = exp(t) , dln(exp(t»/dt=l, thus Rf/Rt=e. 
Similarly, for I(t) = tn, dln(tn)/dt=n/t, so RI/Rt 
= exp(n/t). Theorem 2.4 introduces into the r differen
tiation the panoply of methods that are available in the 
differential calculus. 

The differential calculus, as we recognize, is con
cerned with the study of the infinitesimal difference of a 
function, therefore the name "differential. " The r 
differentiation, as proposed above, can be viewed as the 
study of the infinitesimal "ratio" of a function [see Eq. 
(2.3)]. Thus the calculus developed for this purpose can 
correspondingly be called the "rational" calculus. For 
example, the infinitesimal difference of a constant func
tion is zero, the unit of addition (df/dt=O), while the 
infiniteSimal ratio of the constant function is unity, the 
unit of multiplication (Rf/Rt = 1). And in general, the 
rational calculus bears toward the multiplication in an 
analogous faShion as the differential calculus to addi
tion. From Theorem 2.4, the two branches of calculus 
are closely related. In fact a parallel development of 
the rational calculus along the lines of differential cal
culus is entirely possible. We give, for instance, the 
rational version of Taylor's expansion without proof 
in the following theorem. 

2.5 Theorem: Rational Taylor's expansion: Let R be 
the set of real number~, and f: R - C be n times r dif
ferentiable on E C R - N, then for tEE 

f(t + b) =f(t) [:r f(t)] T:t22 f(t~ 0

2

/21 o •• [:t>(t~ on /nl • Rn> 

(2.12) 

where Rn is the residual term given by 

_ (1.- ft+b r.!1 .A 
Rn-exp n! t dxdtn(x)(t-x) J' (2.13) 

In differential calculus, we were also interested in the 
inverse operation, i. e., to find the primitive of a func-
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tion f(t) or the function whose derivative is f(t). The 
search led us to the integral calculus. Similarly, the 
search for the primitive of a function f<t) in the rational 
sense, or the function whose r derivative coincides with 
f(t) , will lead us to the study of the p integrals in the 
next ·section. And the calculus so developed will be 
called the "potential" calculus. 

III. THE METHOD OF p INTEGRATION 

In this section we shall investigate the method of ob
taining the rational primitives of a given function, 1ft). 
We shall find ourselves dealing with an integral theory 
where the integral is not bilinear with respect to its in
tegrand and the underlying measure. 16 Actually, an ex
ponential relationship is found. We define the exponen
tial operation in the Banach algebra as: 

3.1 Defjnition: Exponential mapping (exp(15: Let AB be 
the complex Banach algebra of the function space C B as 
before. For f, g E A Band u, v E B, the binary operation 
(exp( is defined as: (exp(: C xB - C, 

f(t)(exp«u+v)='(f(t)(exp(u)(f(t)(exp(v), V tEB, (3.1) 

(f(t)g(t»(exp(u =' (f(t)(exp(u)(g(t)(exp(u), V t E B. (3.2) 

For convenience, we write interchangeably, 

f(l)(exp(u =u) exp)f(t) = u» f(t) = f(t) «u = f(t)u. (3. 3) 

We now turn to an examination of the infinite products, 
as a necessary step to the definition of a p integral. In 
the integral calculus, we are first concerned with an 
infinite series: 

00 

Id = 2: f· =11 + 1:2 + ... + f + ... i=l 1- - n , 
(3.4) 

and the (Riemann) integra117 is construed to be the result 
of the limiting process of (3.4) as each term is weighted 
by a differential At;, 

00 

Ic= lim ~ At;!; 
supo.t{.o 1=1 

= lim (Atd1 + Atd2 + ... + Atnfn + ... ), 
sup6. t r"'O 

(3.5) 

In the spirit of the analogy between sums and products, 
the infinite product, 

(3.6) 

would pass into the continuum case, as the index i be
comes the continuous variable t: 

Pc= lim .IT f/H; 
supati"o ,=1 

= lim f1botlf2bot2 ... fnbotn . . " a"" t "" b, fn = f(tn) 
StlPAti-O 

(3.7) 

now with the weighting factors At; to be in the exponents. 
The recognition of this fact is of crucial importance in 
the development of the theory of p integration. Other
wise, the infinite product (3.6) is not necessarily con
vergent; just as in (3.4), the infinite series is not 
necessarily convergent. When the individual terms in 
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(3.5) are weighted we are able to study a much wider 
class of sums of the functionf(t) than in (3.4). There
fore, the weighted product (3.7) will allow us to study 
a wider class of functions f(t) in the product form. We 
write (3.7) symbolically as 

Pc=- lim Dft"ti=-P:dt»f(f)==P:U(f)]at 
supt>.t.-O 1=1 

(3.8) 

when such product exists. Equation (3.8) will be the 
Riemann-Stieltjes version of the P integraL We for
malize our definition by the following definition. 

3.2 Definition: the Riemann-Stieltjes p integral: Let 
f be a function from R (real numbers) to C (complex 
numbers). Then the P integral of f on an interval (a, b) 
in R is defined as 

n 
Ip(f)=- PgU(t)]dt=- lim n f(t )M; 

n-~ hi I , 
8up6tf~O 

a = to <. tl < ... <. tn = b, 

(3.9) 

whenever the limit exists. 

If Ip exists, we calIf to be P integrable on (a, b), the 
result a P integral, the operation, P integration (or for 
brevity, potentiable, potential, and potentiation, 
respectively). We shall extend the definition to a 
Lebesque type in the future. Some of the algebraic 
properties of the P integration are summarized below. 

3.3 Lemma: distributivity and homogeneity of p 
integration: The P integration, p! dt» " is distribu
tive with respect to products of functions f, g : R - C. 
It is also homogeneous with respect to exponentiation by 
a constant a, i. e. , 

p% dt» (fg)(t) == (P~ dt» f(f)}(P% dt» get»~, 

p% dt» (f(t)") = (P! dt» f(t))a. 

(3.10) 

(3. 11) 

Definition 3. 2 is not a constructive definition. However, 
this is remedied by the correspondence theorem given 
below, which correlates the p integral with the ordinary 
integral of a function f(t). 

3.4 Theorem: the correspondence theorem of P 
integration: Let f be a function from R to C. Then f is 
p integrable on a set E C R if and only if f is Riemann
Stieltjes integrable in the ordinary sense on E. The p 
integral is given in terms of the ordinary integral by 

PEU(t)]dt=exp(jEdtlnf(t». (3.12) 

Proof; We shall be brief on the proof. If we take the 
logarithm of (3. 9), we have 

n n 
lnIp (f) == In lim .n f(t;)t>.tj = lim ~ ~/ Inf(i l ) 

n"oo l:Z! n"oo i=l 
supt>.tcO supt>.ti-O 

=f..17 dtlnf(t). (3
0

13) 

We are now in a position to find the primitive of a 
function f(t). 

3.5 Theorem: the r primitive ofajunctionf(t): Letf 
be a function from R to C. If f is p integrable on the in
terval (a,x), then Ip(f) on (a,x) is a function of the 
limits a and x and the r derivative of Ip(f) with respect 
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to x is f(x). The r primitive of f(x) , Ip(f), is unique up 
to a multiplicative constant. 

That Ip(f) is a function of the limits of integration is 
easy to see. The r derivative is found by using the two 
correspondence Theorem (2.9) and (3.12), 

R d d 
Rx Ip (f)(x) = exp dx lnIp(f) (x) =- exp dx In exp f..:< dtlrif(t) 

= exp lnf(x) =f(x). (3. 14) 

We look at some examples. If f is a constant func
tion, f(t) =- Q, then 

Ip(f) = exp fa b dtlnO' = exp(b Ina - a InQ) = obi Qa, 

while the reverse operation 

=explna= a. 

Now f(t) = tn, 

Ip(f) = exp fa b dt Inr = exp(n[t lnt - t]!) 

= (bbe-b)n(aae-a)"n . 

The inverse operation gives 

B.. [(tte- t )n(aae-a)"n1 = fexp!!.. In(tte-t)n) .1 
Rt \1 dt 

= expn lnt = tn. 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The generalization of the p integral (3. 9) to general 
measures can be made through the correspondence 
Theorem 3.4. The step- by-step construction will not 
be given here. We give the result directly. Let E be a 
complex separable (Hausdorff) Banach space, 
(E, S B, (.1.) be a measure space with S B a a algebra on 
E, and (.J. the positive measure (more precisely, real 
and nonnegative). Then we propose the following 
definition. 

3.6 Definition: the general measure theoretical p in
tegral: Let f be a measurable form on the complex 
separable Banach space E, f:E - C, with the given 
measure space (B, S8, (.1.). Then the P integral of f, 
I: (f), on a set E C E is given by 

Iff (f) =: P E /.L (dt)>> f(t) =- exp( IE /.L (dt) lnf(t» (3.19) 

whenever the given integral exists. Note that J E (.J. (dt) 
is the Lebesque integral. 

The definition can also be generalized to complex 
measures. 

The method of P integration is found to be Vitally 
important in the characterization of the integrals of 
functionals. In fact, the functional integral represents 
the natural results of the interaction between the con
ventional integral and the newly defined P integration. 
Other fruitful interactions of this new methodology with 
conventional mathematics can also be brought forth. 
We shall consider a few in the following sections, such 
as applications to algebra, probability theory, and to 
the theory of matrices of continuous indices. The 
major result will be the characterization of the func
tional integral in Sec. VI. We can also envisage the 
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TABLE I. The Binary expansion of (a + b)". 

n a b loglO(a + b)n loglO(a + b) n 
exact calc* 

1000 0.6 0.5 41.39 42.98 

10000 0.6 0.5 413.9 415.9 

100000 0.6 0.5 4139. 4141.2 

*From Eq. (4.5). 

application of p integration to continuous functional 
differentiation. This will be a subject for future study. 

IV. APPLICATIONS TO ALGEBRA 

The ordinary algebraic formulas have their counter
parts in the continuum approach here. We examine two 
cases here, the factorial of an integer n and the binary 
expansion of (a + b)". 

Factorial: The factorial n! of an integer n is defined 
as n (n - 1) ... (3) (2)(1) or, in product form, 

n 

n! = I1i. 
1=1 

(4.1) 

As i becomes a continuous parameter t, (4.1) becomes 
the p integral of the func tion f(t) = t, 

(4.2) 

This is the Stirling formula of factorials for large x 
that is extensively used in statistical mechanics. 18 The 
interpretation for this approximation is that for large 
n the difference between successive indices, t:J..i = 1, 
becomes insignificant in comparison with the magnitude 
n and formula (4.1) passes into the P integral, 

n n 
n! = n i AI 

- lim n WI = Po [t]dt. (4.3) 
1:1 Atj-O tl=O 

Binary Expansion: The expansion of the discrete 
formula (a + b)n is given by 

n ~ n! n-m m 
(a+b) =~m!(n_m)!a b. (4.4) 

\\hen n becomes large the sum becomes an integral and 
the factorials become those given by (4.2) (with m - t, 
n-x), 

Table I gives the calculation for some cases when n 
approaches the order of 105. Formula (4.5) follows 
(4.4) closely, as a step size t:J..t = 5 in the numerical 
integration is used. 

V. APPLICATIONS TO PROBABILITY THEORY 

(4. 5) 

The study of the probability distribution of the sum 
of independent identically distributed random variables 
is important to the limit theorems in probability theory. 
Let xl1x2, .. ' ,xn be a sequence of independent random 
variables. We are interested in the probability dis
tribution of the sum Z., 

(5.1) 
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for any natural number n. We are also interested in the 
continuum case when the indexj takes on continuous 
values t. By analogy we study the random variable Z t, 
for which the differences 

Zt2-Zt1, ... ,ZtJ-ZtJ_1, ... ,Ztn-Ztn_1 (5.2) 

are independently distributed for t1 < t2 < ... < tn. Such 
investigation is important in the study of stationary 
Markov processes19• 20 and Brownian motions. 21 The 
probability distribution of such random variables is 
called the infinitely divisible distribution. We first 
examine the case when the differences in (5.2) are 
identically distributed according to a same distribution 
law and derive the formulas of Levy by our p integral 
approach. 

This distribution of the sum of two independent 
random variables is known to be the convolution of the 
individual distribution functions. Therefore, it is more 
convenient to study the case in the Fourier space, i. e. , 
with respect to their characteristic functions. For the 
sum (5.1), the characteristic function of Zn is 

(5.3) 

where fj(k) = f dx exp(ikx) dPj(x) is the characteristic 
function of Xi' P/x) being the probability distribution 
of x j. As the index j becomes continuous, the number 
of factors in the product (5.3) becomes infinite, we 
find that the p integral notion readily applies. Thus for 
the random variable Zt' of (5.2), we have 

t' [ ]dt fzt,(k) = Po ft(k) . 

When the factors in (5.2) are identically distributed 
according to the normal law, with characteristic 
function 

(5.4) 

(5.5) 

where /J. and 0 2 are the mean and variance, respective
ly, of the normal distribution, (5.4) becomes 

!Zt,(k) =exp]ot'dtln!t(k) =exp{t'[i/J.k- (02/2)k2l}, (5.6) 

which is a formula given by Levy. 8 For Poisson 
distribution 

P(x=nh]==(An/n!)e-n, ft(k)=expA(exp(ihk)-1), (5.7) 

where h is the span. We have 

fzt,(k) = exp j~ t' dt lnft(k) == expAt' (exp(ihk) - 1) (5. 8) 

which is again verified by Levy's result. 8 

We can also apply the present approach to study the 
infinitely divisible distributions of random variables 
whose summands (5.2) are not identically distributed. 
For example, if t = 0, !o(k) is distributed according to 
the normal law, and at t=cxo, f~(k) is distributed ac
cording to the Poisson law, and suppose that a 
homotopy H(j; s) exists22 such that H(j; 1) = fo (k) and 
H(j;O]=f~, s==e- t and H(j;s] is continuous with 
respect to s, the parameter, then the distribution of 
the sum, Z t', for t' == 1, is given by 

(5.9) 

If the homotopy is given by 
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H[j; s] =H[j; e- t
] = exp[i/J.k + (eXP(ikt) 

ikt ) 1 + t2 - ~ 
- 1- 1 + t2 -t2- G(t)J ' (5.10) 

i. e., as t - 0, we have - ~t2k2 in the parentheses with 
G(t) of the order O(t2), we have the normal distribution. 
As t - 00, we essentially have (expikt - I)G in the ex-
po net, which is the Poisson form. Then the distribu
tion of Zt' is given by 

!z (k) = exp (t ds lnH[j; s] 
t Jo . 

= exp ~/J.k + ;:~ dG(t) [eXP(ikt) - 1- /!tt2] 1 ;t), 
dG(t) =etG(t)dt, (5.11) 

which is the Levy-Khintchine formula1 for infinitely 
divisible distributions with modified interpretation 
(i. e., nonidentically distributed summands). Since dif
ferent homotopies can be constructed, if we choose 

H[j; s] = H[j; e-t ] = exp[i/J.k + fo ~ dK(t){exp(ikt) - 1- ikt)t2], 

(5.12) 

where K(t) is of bounded variation with dK/dt of the 
order, O(t2), as t-O, we have the so-called Kolmo
gorov formula1 for the infinitely divisible distribution. 
Note the difference in the interpretation of the distribu
tion laws for the summand (5. 2) in our case. 

Since the sum of a finite number of independent 
infinitely divisible random variables is itself infinitely 
divisible, so is the (weak) limit of such a sequence of 
random variables. The theorem of canonical represen
tation of infinitely divisible distributions can be now 
interpreted, in light of the development here, as that 
for each infinitely divisible random variable its charac
teristic function corresponds to the homotopy with a 
certain value for s, constructed from the discrete 
Poisson distribution either according to the Levy
Khintchine formula or the Kolmogorov formula. That 
any infinitely divisible distribution is a finite super
position of Poisson distribution is already a known 
fact. 1 the extension to a homotopy appears natural. 

VI. THE INTEGRAL OF FUNCTIONALS 

We start our study of the functional integrals by con
sidering the n-fold integral of a function of n variables, 

(6.1) 

As the index i takes on continuous values t, the func
tion!(Yi) becomes a functional![y(t)], and the product 
of the n-fold integral signs also involves infinitely many 
factors. (6.1) can then be written symbolically as 

lim(n jbi dyi) ·!(YI)-(Pdt»[jb(t)dy(t»). (f[y)) 
n"."x,o l=1 aj . a(t) 

(6.2) 

by adopting P integral concepts. This formula is found 
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to be a correct symbolism for the integral of a func
tional. We examine an example studied by Frederichs. 3 

Let 4>[y] be a functional of the function y(t) given by 

4>[ y] = 7T-t /2(exp fo t dr b(r)y (r»)(exp[ - fo t ds y (S)2». 

(6.3) 

Then the integral of (6.3) can be written symbolically 
as 

(pl dt» [j dy (t») . (4)[ Y D. (6.4) 

However, by the correspondence theorem (3.4) we can 
write Pdt» [ J dy (t)]. ( . ) in the operator form, 

Pdt» [j dy (t)] . ( . ) -= (exp f dt In[j dy (t)]) . ( . ). (6. 5) 

We shall show that the operator form of functional 
integration is equivalent to the P projection method of 
Frederichs in the case of (6.4). If we expand (6.3) into 
cylinder functionals, we have 

cJ.>[y] = lim 7T-t / 2 exp[(b(tt)y(tt) - y(tt)2)~tt1 ... 
AtrO 

(6.6) 

When we assign an exponential weighting factor ~tl to 
the integral signs of (6.1), (6.4) becomes 

(6.7) 

in the limit SUPN; - 0 and n - 00. But that is exactly the 
definition of a P integral [see (3.9)], i. e. , 

7T-t / 2pl [7Tt/2 exp b~)2rt =7T-t /2 exp it dtln~t/2 exp b~)2J 

(I b(t)2 
= exp Jo dt-4- , (6.8) 

the same as the result of Frederichs. 3 The P projection 
method can be most conveniently applied to functionals 
which are "separable," i. e., which admit an n-product 
form of (6. 6) where each factor is a function of only one 
Yi. A more general approach will be the operator ap
proach of (6. 5) to be examined next. 

We therefore prepare cJ.>[ y] of (6.3) into a form that 
is ready to interact with the operator form (6. 5) of the 
functional integration, 

cJ.>[ y] = 7T-1 /2 exp fo 1 dt In exp[b(t)y(t) - y (t)2]. (6. 9) 

(6.4) then becomes 

(pl dt» [j dy (t)]) . (cJ.>[ y) 

=7T-1 /
2 exp Jo 1 

dtlnj dy(t). exp[b(t)y(t) - y(t)2] 

= 7T-1 /2 exp J~ 1 
dt In exp[b(t)2/ 4) r:~ exp[ - (y - b/2)2) 

= 7T-1 /2 exp fo 1 dOn exp[b(t)2/4JJ_: dz exp(- z2) 

= 7T-112 exp f/ dtln(exp[b(t)2/4J7T1 /2) 
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= 1T-1 /2 exp J~ 1 
dt(b(t)2 /4 + ln1Tl/2) 

= exp J
0

1 
dtb(t)2/4 (6.10) 

which is the result given by Frederichs. We note that 
the second factor in (6.3) is actually a Gaussian mea
sure. We remark also that in the derivation (6.10) the 
inner integral with respect to the path function y (f) is 
carried out at constant t, consistent with the common 
practice in functional integration. We immediately gen
eralize to the following definition of the integral of func
tionals, omitting the intervening developments. 

Let AB be the complex separable (Hausdorff) Banach 
algebra of the function set C B as before. Let.p be a 
function (functional) from Aa to C. Then the functional 
integral of .p is given by the following definition. 

6.1 Definition: the integral of functionals: Let y <=.Aa 

be a function from a complex, separable (Hausdorff) 
Banach space, B, to C (complex numbers). Let 
(B, Sa, Il) be a measure space on B, and (Aa, SA, m) a 
measure space on A8 (i. e., S8 and SA are the a alge
bras on B and A a, respectively, and Jl and m are the 
corresponding real and nonnegative measures). 23 Then 
if the functional .p : A a - C admits an integral represen
tation of the form 

.p[y J = expJ
E 

Jl(dt)f(y(t», (6.11) 

where f is a complex valued function, f; C - C, E ~ B, 
we define an xt(y) function by 

X tev) = expf(y (t» 

and the functional integral, If (.p) of <I>[y 1 on the set 
F ~ A a is defined as 

IJ(.p) = PE Jl(dt)>> [IF m(dy(t»] . .p[ y] 

=expJ~j.l(dt)ln[jFm(dy(t»·Xt(Y)] (6.13) 

whenever the successive integrals exist. 

Expression (6. 13) simplifies when B = R (real num
bers), and Aa=RR as we take Sa and SA to be the 
induced (in the sense of Wiener24 ) Borel sets. Further
more, if y(t) varies from art) to b(t), (6.13) reduces to 

If(a. b) (<1» = exp J. 12 dt In[ J b((t) dv(t) expf(y (t»], (6. 14) 
tl a t) . 

wheref: R - C. 

We note that Definition 6. 1 gives the integral of a 
functional of the type (6. 11) in closed form, in com
parison with the expansion methods. It also allows 
calculations with finite limits from art) to b (t). The 
Wiener integral is a special case of (6.13) when the 
Gaussian measure is selected for m. For most applica
tions in physics and probability theory the integral form 
(6.11) is quite sufficient. We shall examine some 
known sample cases in quantum physics where the 
Feynman path integral is to be evaluated. For certain 
more general functionals, the functional integral can 
also be defined in closed form. We shall take this up in 
the discussion section. 

VII. CONTINUUM MATRIX ALGEBRA 

Owing to later requirements, we develop here, with
out proof, the continuum counterpart of the matrix 
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theory. Only elementary aspects will be touched upon, 
some of which are apparent generalizations of the dis
crete theory. 

(1) The continuum matrix, C(s, t), is a function from 
ExF-R, where E,FCR, the real numbers. C(s,l) is 
called a square matrix if E = F. 

(2) The transpose, CT(s, f), is obtained from C(s, t) 
by CT(s,t)=C(t,s) V SEE and tE F. If C(s,l) is square 
and invariant under transposition, C(s, t) is called 
symmetricaL 

(3) C (s, t) is called an orthogonal matrix iff 
JdxC T(s,x)C(x,I)=6(s,t), where 6(s,t) is the Dirac 
delta function. 

(4) The eigenvalue of a square matrix C (s, l) is the 
function A(r) such that the condition f dx l'r(X)C (x, t) 
= A(l')Vr(l) for some nonzero function 1)r(l). 

(5) If C (s, t) is a square matrix, and is symmetrical 
in sand t, then there exists an orthogonal matrix 
A(s, f) such that C(s, t) can be diagonalized, 
f dx ely A T(S, x)C(x, y)A(y, t) = A(s, f)6(s, tl, where A(s, I) 
is diagonal, and A (rr) ~ A(r), the eigenvalues of C. 

(6) The product of two matrices A and B is given by 
(AB)(s, t) = J dx A(s,x)B(x, f) . 

(7) The determinant of a square matrix, C(s, f), with 
eigenvalues A(r) is defined to be the potential (fJ in
tegral) of its eigenvalues, i. e. , 

det(C(s, t» = PE [A(r)]dr. 

(8) For A, B, square matrices, det(AB) = det(A) det(B). 

(9) det(6(s, t)) = 1 

The principal result so far is contained in (7), where
by the definition of the determinant of a continuum 
matrix is made possible through the potential calculus. 
The discrete concept of a determinant as the multi
linear alternating (exterior) product is, admittedly, 
difficult to be generalized to the continuum case o 

VIII. THE QUANTUM HARMONIC OSCillATOR 

Feynman's path integral method for the evaluation of 
the propagator of a quantum system is a ready example 
for the application of the method of functional integra
tion developed here. To demonstrate the utility of 
(6.14), we examine the known case of quantum harmonic 
oscillators. 2,10 The Lagrangian for this system is given 
by 

(8.1) 

where x =x(t) is the path with fixed ends, x(O) =xo, 
X(T) =X T • The propagator is then given by the functional 
integral 

K(T, 0) = PO" elt» [fX(t)] . exp [~ iT rill;l (i2 - W2X2)] , 

(8.2) 

Feynman2 showed that the kernel can be expanded 
around the classical path "i(t), i. e. , x(l) =x(t) + ,,(t)o 
After the extraction of the claSSical contribution, a 
quadratic functional in :v (t) is obtained, 
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K(7", 0) = exp~scI (T, 0) Podt» [fdY(t~ 

. exp[~ loT dt; (y2_ W2y2)] , 

with y (0) = y (7") = O. SCI is the classical result, 2 

SCI(T,O)= 2 n:w [(x~+x~)coswT-2x()XTJ. 
SlnWT 

(8.3) 

(8.4) 

The usual practice2,10 is to discretize the functional in 
y(t), 

(8.5) 

where t = s 7", Z j = (m/21i7d /2y j. Note that the integral is 
now dimensionless. The summation onj is from 1 to 
n - 1 since the initial and final positions of x are fixed. 
This contributes a factor of (irr)"1 to the normalization 
constant N. (8. 5) is a quadratic form, and can be 
written as 

(Nirr)"1 expi 66 Z,AjkZk' 
j - k 

In the continuum case, (8. 6) has the form 

<I>[yJ = <I>[z] 

(8.6) 

= (Nirr)"1 exp[ - rl 101 
ds 101 

dt Z (s)A (s, t)z (t)]. (8. 7) 

The matrix A(s, t) is as given by MontrolL 10 If A(s, t) is 
symmetrical, it can be diagonalized by an orthogonal 
matrix C(s, f), 

1 drdr' CT(s,r)A(r,r')C(r',f)=A(s, S)6(S, t). (8.8) 

Upon defining a new variable, u(t) == f ds z(s)CT(s, f), we 
have 

<I>[Y] = <I>[u] 

== (Nirr)"1 exp[ - r 1 101 
dfu (f)A (t, f)u (f)] (8. 9) 

which is of the form (6. 11). Therefore the integral is 
given, according to (6.14), by 

[exp -Iii SCI (7", O~ K(T, 0) 

== (Nirr)"1 P[!dy(tr
t

• <l>ry] 

== (Nirr)"l P [jdZ(t)]dt IJI <I>[z] 

==(Nirr)"lp flu(t) dtIJI·lcl·<I>[uJ 

=(Nirr)"lI J I.ICI.exp /1 dtIn [/+OOduexp(_i-1AU 2J 
o -'" 

== (Nirr)"IIJI· exp jldtln[irrdet(A)"I]I/2 
o 

== (Nirr)"IIJ/ (irr)I/2(detA)"1/Z, (8. 10) 

where J is the Jacobian of the transformation from y to 
z, i. e., J== 6(s, t)(m/2IiTE)"I/2; by (7.7), IJI 
== det(6(s, t)(m/21i7E)"1 /2) = (m/2Iin)-1 /2. I C I arises from 

1995 J. Math. Phys., Vol. 17, No. 11, November 1976 

the transformation z to u, and is equal to ± 1 for 
orthogonal matrices, we took it to be + 1. The nor
malization constant is taken such that, 2 

K(b, a) = 1 dx,j(b, c)K(c, a). (8. 11) 

It has the dimension of length squared. Therefore, 
N= IJI2. The determinant det(A)=det(A), and is given 
by MontroU10 to be (rfw)"1 sin(wr). We have then, 

( 
mw ) 1/2 i 

K(r, 0) == 'Ii . exp-IiSCI (r, 0). z smwT 
(8.12) 

This is the complete expression for a quantum 
harmonic oscillator with fixed end points. For x(O) = 0, 
and free x(r), the same methodology can be shown to 
apply and give 

K=sec 1 / 2(TA1/ 2), rA <rr/2, 

A being the spring constant. 10 

(8.13) 

IX. THE ELECTRON-PHONON SYSTEM 

The electron-:phonon system considered by Abe9 

consists of a Hamiltonian, 

H(p, q) ==p2/2m + yp + V(q) (9.1) 

with 

V(q) = (mw2/2)q2 + mwaq, (9.2) 

where the symbols have the usual meanings. The den
sity matrix is then given by the functional integral 

P(ql,qO)=P[jtq(t) dtoexp[_ ;:Bdl; 
x('!!f + iliy(t)2 - V(q(t») • (9.3) 

As before, Abe extracted the classical path contribu
tion out of (9. 3) by setting q == q + y, q being the classi
cal path, and discretized the integrand 

P(qj,qo)=[exP(-f*)]P[/dY(f) 1ft 

. [1( ~~] . hm exp - -2 6 ~ Y J " " Yk , 
• ~O j k vq j vq k 

(9.4) 

where exp(- f*) is the classical contribution, 

( f *) f. mw «( 2 2) (Ii) exp- =exp -\2Iisinh(liwj3) qO+q1 cosh wj3 

- 2QOql + 2Aq1 + 2Bqo + 2C»). (9. 5) 

A, B, and C are known integrals9 of the elements of the 
Hamiltonian (9.1); and the quadratic form in (9.4) has 
elements 

m 
- (3EI(2' j==k±1, (9.6) 

0, otherwise. 

As before, we set ZI= (m/f3di2)1/2Yj, and diagonalize the 
quadratic form by a C matrix and transformation of 
variables from z j to U J = L:k C J"z k , 
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P(QlqO) = (exp(- f*)}(27l"N)-1 P [j du(f)]<lt 

X IJII C I lim exp(- i 0 uJAJJuJ). (9.7) 
e -0 J 

The continuum case is then 

P(Q1QO) = (exp(- f*»(27l"N)-1IJI P [j du(f)]<lt 

. exp 101 
dt - ~(t)A(tt)u(t) 

= (exp(- f*)}(27l"N)-1IJI • exp 101 
dt 

xln J_:'" du exp(- iuAu) 

= (exp(- f*»(27l"N)-1
1 JI exp 101 

df lnv27l"/detA 

= (exp(- f*»N"1IJI (27l"detAr1/
2

, (9.8) 

where N is the normalization constant, J the Jacobian 
of transformation, \ J \ = (ml {3 En2r 1 /2, \ C \ = 1. N is 
determined as before, N= \J\2, det(A) is given by Abe 
as sinh(nw{3)/({3enw). We have then, 

( 
mw )1/2 

P(Q1QO) = h sin(nw{3) exp(- j*), (9.9) 

where exp(- j*) is given by (9.5). This result checks 
with that of Abe. 9 

We note that in the derivation, the integral was 
rendered dimensionless due to the presence of the ex
ponential and logarithm functions, also the velocity 
(or momentum) terms were discretized and the result
ing expression absorbed into the quadratic form, which 
was in turn found to obey some differential equation that 
could be solved to give the value of the determinant 
det(A). The structure among these various elements 
was correctly given by the functional integral formula 
(6.14), and conventional results were obtained. 

X. DISCUSSION 

Through the development of the methodology of the 
continuum calculus, i. e., the "rational" and "potential" 
calculi, we were able to characterize the integral for 
functionals in Sec. VI. The formula given is in closed 
form and amenable to conventional mathematical 
manipulations. Applications to algebra, probability 
theory, and Feynman's path integrals in quantum 
physics yielded valid results. We remark that in the 
presentation, the adherence to generality and rigor was 
at times sacrificed for the sake of giving a concrete 
demonstration, in a short time span and space, of the 
applicability of the present approach. The fecundity of 
the theory was also not fully explored. A case in point is 
the cross-fertilization of the potentiation operation and 
the ordinary differentiation, which will be called the 
homogeneous continuous differentiation and the 
heterogeneous continuous differentiation. The result 
will constitute the "inverse" operation of functional 
integration. We hope to be able to present a study on 
this in the future. The detailed nature of the P integral 
and the functional integral also deserves to be scrutin
ized from the measure theoretical point of view. To 
facilitate the calculation of the functional integrals, 
numerical methods should be developed. Another 
urgent task will be the characterization of the integral 
of functionals of different representation. For instance, 
what is the functional integral of the following functional: 
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w[y]=J dtf(y(t», j:R-C. (10. 1) 

We can give only a tentative solution here by invoking 
a "differentiable" homotopy to replace y (t) in the inner 
integral, and a Riccati type of construction for xt(y) 
(see Definition 6.1). Instead of (6.12), xt(y) is now a 
functional, 

x t[ y] = exp[j(y (t»1 Jo t dsf{y (s»]. (10.2) 

The term J5dsj(y(s)) in the denominator acts like some 
kind of a "memory functional. " If for the given lower 
limit a(f) and upper limit b(t), a homotopy H[y; X] 
exists such that H[ y; O](t) = a(t) and H[ y; l](t) = b(t), and 
oH/aX exists for X E: (0,1), then (6.14) is replaced by 

lja· b)(W) = exp 1 dtln J~ 1 dX(~~) x t[H] (10.3) 

where 

xt[H] = exp{J(H[y;x] (f»1 10 t dsj(H[y; xl(s»}. (10.4) 

The class of all homotopies H[y; X] that assign the same 
value C\: to the functional integral (10.3) will be called 
an invariant class C,,[w] relative to w[y] of (10.1). 
Clearly, all the invariant classes C 0:[ w] form an equiv
alent decomposition of the set K of all admissible 
homotopies of y (f), and definition (10.3) would have 
meaning only when C\: is uniquely determined for all 
admissible homotopies. In other words, a general 
theorem on the class of admissible homotopies is need
ed. We present a case study for an improper integral 
of a functional of type (10.1) in the Appendix. Further 
investigation is required. 

Finally, with the ascertainment of the integral of 
functionals, it is hoped that new results can be derived 
from its use, on witnessing the current interests25 in 
path integrals in various branches of physics. 
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APPENDIX: THE HOMOTOPIC CONSTRUCTION 
OF FUNCTIONAL INTEGRALS 

In this Appendix, we shall determine one possible 
invariant class of admissible homotopies that are 
associated with a (diagonalized) quadratic functional 

<1?[y]=J~1dtB(t,t)y(t)2, (A1) 

where B(t, t) is a given fixed matrix. Frederichs3 con
Sidered the functional integral of a similar (non
diagonalized) version of (A1), with a Gaussian measure 
and for the limit - cO ,,; Y (t) ,,; + cO. 

We first apply (10.2), 

x I[ y 1 = exp[B(t, t)y(t)2 / J~ I ds B(s, S)y(S)2]. (A2) 

Then (6.13) gives for the Gaussian measure 

If(<1?) = exp 10 1 
dt In J_:'" dv (t)[ exp(- .v (tnJx t[ y J. (A3) 

Now if we construct a homotopy with the lower limit 
a(t) = 0, 
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H[y; AW) =a(t) + 1 ~ A [bet) - aCt)] = 1 ~ A bet), 

we can define a functional integral, J,(4)), 

J,(4)) = exp fo 
1 
dtln f/ dA b(1- At2 

(A4) 

x[exp(- b2(A/ (1- A»2)]. x t[H]. (A5) 

However, we make a transformation of variables, 
Y=A/(l- A), and let Q(t)= Jo'dsB(s,s) b(s)2, 

J,(4)) = exp fo 
1 
dt In fo ~ dy b exp(- b2i) exp(Bb2y /Qy) 

= exp fo 1 dtlnb(t) exp[B (t)b(tNQ(t)]!(1T/b2(t)2)112 

= exp fol dtlnt(i)1/2 exp[B(t)b(t)2/Q(t)]. (A6) 

The functional integral 1,(4)) is simply related to J,(4)) 
by a factor of 2 in the argument of the logarithm 
function, 

1,(4)) = exp f/ dt ln1Tl/2 exp[B(tt)b(t)2/Q(t)] 

= (1T)1 /2 exp fo 1 dt [B(tt)b(t)2/1o t ds B(ss)b(s)2J. (A7) 

If we choose bet) to be a constant function, bel) = C, 

1,(4)) = (1T)1/2 exp fo 1 
dt B(tt)/ fo t ds B(ss) 

1 
= (1T)1/2 fo dIB(t, t). (AB) 

Aside from a normalization factor (1T)1/2, the result is 
identical to that of Frederichs. 3 Therefore, for im
proper integrals [- co .,; Y (I) .,; co] of the func tional (Al), 
the invariant class of admissible homotopies is the one 
equivalent to the form (A4) with homogeneous lower 
limit, aCt) = 0, and constant upper limit, bet) == C. 

We note that as to functionals of the exponential rep
resentation (6. 11), no uniqueness question arises, 
since no homotopy is involved. For the representation 
(10.1), a purely formal and invariant definition of its 
functional integral independent of the homotopy con
struction could also be given via (10.3) by restoring 
yet) in place of H[y; A] everywhere in (10.3). However, 
then practical ways of evaluation must be found to 
calculate the invariant 1,(4)), overcoming the difficulty 
due to the presence of the "memory" functional 
Hds/(y(s». One possible solution may lie in a Fourier 
series expansion of y (t). The homotopy route can then 
be viewed as a constructive definition of 1,(4)), but at 
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the cost of the incurrence of the uniqueness question 
and the restriction to homotopic limits of integration. 
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On the irreducible representations of the Lie algebra chain 
G2~A2 * 

M. Perroud 

Centre de Recherches Mathematiques, Universite de Montreal, Montreal, Quebec, Canada 
(Received 2 February 1976) 

In the first part of this article we solve the "state labelling problem" for the irreducible finite dimensional 
representations of the G2::JA2 chain, using a method applicable to other algebras-subalgebras chains. In the 
second part we define, for these representations, operators analogous to those introduced by Nagel and 
Moshinsky for the A.?An _ 1 chain and explicitly construct the representations belonging to the equivalent 
classes ~o and ~A. 

INTRODUCTION AND SUMMARY 

Some irreducible representations of the Lie algebra 
G2 (or of its two real forms) appear in the well-known 
B 3 :) G2 :) Aj chain used by Racah in atomic spectroscopyj 
and occasionally in elementary particle physics through 
the G2 :) A2 chain2

; This latter model, conveniently gen
eralized in the wider context of the other exceptional 
Lie algebras F 4, Es, E 7, Es is the subject of much cur
rent interest. 3 

General results on the representations of the G2 :) Aj 
chain (where Aj is a principal three-dimensional 
algebra4) are very meagre. The "basis labeling prob
lem" is not yet solved; a general method for this 
exists5 but a complete answer requires the displaying 
of an explicit construction of the representations of G2• 

The representations of the chain G2 :) Az afford such a 
possibility. Some years ago, an algorithm was pub
lished,6 which permits the construction of the represen
tations of Gz by reduction to this algebra of the irre
ducible representations of the particular Gel'fand
Tseitlin Aj :) As chain. This method however is effec
tive and well adapted only for numerical computations. 

When restricting a representation of G2 to its sub
algebra A 2 , the carrier space of this representation 
contains a vector subspace of crucial importance: the 
vector subspace of the maximal vectors. The whole 
problem of the construction of the representations of the 
G2 :) A2 chain can be reduced to the construction of a 
basis for this subspace. (This remark is valid for any 
representation of an algebra-sub-algebra chain. ) 

As a first step, we must find a convenient labeling 
for such a basis. Applying a very natural method 
(described in Appendix B) we solve this problem easily. 
The result is an interesting one: A basis oj maximal 
vectors of the representation of A2 subduced by a rep
resentation of the class ~2 of G2 can be put in a one
to-one correspondance with a Gel'fand-Tseitlin basis of 
a representation belonging to the class ~2 of A 2• 

As a second step, we find a set of operators which, 

2,a,+3a, 

FIG. 1. The positive roots of G2 • 

a, 

~'----_ a, 
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acting repeatedly, generate this subspace starting from 
a given maximal vector of the G2 representation. These 
operators are just the equivalent for G2 :) A2 of the 
operators introduced by Nagel and Moshinsky for the 
representations of the chain An:) A n•1 0 7 These operators 
permit an effective construction of a basis of maximal 
vectors and, thanks to the Asherova-Smirnov opera
tor, s a construction of a basis of the whole carrier 
space of the representation. Being expressible in 
terms of the G2 generators, they also permit the com
putation of the matrix elements of these latter. 

As a last step we carry out this program explicitly 
for the representations belonging to the classes 6S!.~ 
and~. 

1. NOTATIONS AND CONVENTIONS FOR THE 
CHAIN G2 ~A2 

The base field of G2 is here C (or lR). Let H denote a 
Cartan subalgebra of G2• As usual we identify it with its 
dual by means of the restriction to H of the Killing form 
defined on G2• We choose for the root system 

L={± 0'1>± 0'2,± (0'1 + 0'2),± (O'j +20'2),± (O'j +30'j), 

± (20j +3G1'2)}, 

the following normalization: 

(1. 1) 

For each root p EO~, we know there exists an element 
e p and an element e _p of G2 , such that for each It EO H we 
have 

[h,epl=(h,p)e p, [ep,e_p]=h p (hp='p) 

and (for all p, J.L EO L) 

[ ] = {Np• ~ep+" if p + J.L EO 6, 
e p' e" 0 if P + J.L i L, 

The structure constants Np• ~ of course satisfy 

but it is always possible to impose the further two 
conditions 

a,\(: .~ C!,+~a, FIG. 2. The positive roots of A2 '..,G2 • 

- , . 
I 
, 0

1 
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With respect to the normalization (1.1) we can set 

N"'I' "'2 =1, N"'I+"'2' "2 =- 2i3/3, N"I+2"'2' "'2 = 1, 

N "'1 +2"'2' "1 +<"2 = 1, N "'1 +30/2' "'1 = - 1. 

From these, all the other structure constants are im
mediately found with the help of the above two conditions. 

The regular subalgebra4 .42 of G2 is completely de
fined (up to an equivalence) by the root subsystem 

i = {± £iI, ± £i2, ± (£i1 + £i2): £i1 = a, £i2 = al + 3a2}c~. 

(1. 2) 

The Cartan subalgebra i; of ..42 generated by L is con
tained in H; more exactly iI =H and, if W denotes the 
Weyl group of this subalgebra, it is a subgroup of the 
Weyl group Wof G2• Actually, 

W::o W1 +- WSO/
1 

(1. 3) 

(whereSp:M-SpM=M-[2(M,p)/(p,p)]p, PE~, MEH). 

2. STRUCTURE OF THE IRREDUCIBLE 
REPRESENTATIONS OF G2 :::l A2 

Both equivalence classes of irreducible finite dimen
sional representations of G2 and A2 are characterized 
by any two nonnegative integers Al and A2; those of G2 

• 11.1 11.2 f A b 11.1 A2 wlll be denoted by Cl=Ee' those a 2 y ~ . 

If D E ~2, we know there exists a maximal weight 
A E H such that 

Al = 2(A, al)/(Qlb Qll), A2 = 2(A, Ql2)/(Ql2, Ql2), 

and each weight P of D is of the form 

P= A - klQ11 - k 2Q12, 

where kl and k2 are two nonnegative integers. We write 
~(D) for the set of weights of D. If Vp denotes the weight 
space of P, V admits a direct decomposition 

V= EEl Vp 
pEAW) 

and for each h EH and each p E ~ we have (vp E Vp ) 

D(h)vp = (h, P)v p, 

D( ) {EVp+p ifP+PE~(D), 
e p vP::o O if P+Pri. ~(D). 

To simplify our notation we put 

Ep::oD(e p ), H=D(h). 

The subalgebra A2 of G2 being simple, the represen
tation i5 obtained by restriction of D to .42 C G2 is com
I2,letely reducibl~ int,? a sum of i£redu~ible ones. Since 
H ~ H, for each hE H, we have Hv p = (h, P)v p and there
fore A(.i5) = ~(D). 

Let Z denote the subspace of V of the maximal vec
tors of the representation 15, i. e. , 

Z={VE V/E"'IV =O, E"'I+3"'2V=0}. 

[By virtue of (L 2), D(e;;)::o E" , D(e <>2) = E "1+3", • ] It is 
1 1 2 

generated by weight vectors v M, 

HVM = (h, M)v M 
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such that 

1\1 - 2(M, at) d M _ 2(M, Qll + 3(12) 
j 1- (QlbQll) an 2- (Qll+ 3Q12,QlI+ 3Q1 2) 

belong to N; so we have 

Z::o EEl Z M, 
(M) 

where dimZM equals the number of representations be
longing to ~ contained in 15. 

A labeling for a basis of weight vectors of Z is given 
by the "path-label" method (cf. Appendix B): To each 
weight vector v E Z, there corresponds a unique triple 
{p, q, r} of nonnegative integers defined by 

E r *0 Er+l 0 
O/1+"'2V , "'1+"'2V = , 

E~I+2"'2E~I+C"2v * 0, E~;~2"2E~I+"'2v = 0, 

E ~2E~I+2"'2E ;1+"'2v * 0, E~;l E ~1 +2"'2E ;1+O/2V = O. 

The weight M to which v belongs is then given by 

M=A-p a2-q(Qll +2(12)-r(QlI + Ql2); 

consequently v is a maximal vector of a representation 
b I . t Ml M2 ·th e ongmg 0 ()--Q Wl 

(2.1) 

The domains of definition of the numbers p, q, and r 
are given by the following theorem. 

Al 11.2 - M M2 -
Theorem: If DEOiiIiite, D(M1,M2)Ed--o, and if D 

denotes the restriction of D to A2 C G2, then 

D= + D(A1 +p-r, A 1 +A2-p-q) 
(p,o, r) 

with 

0,,;p,,;A2, 0,,;q,,;A1, 0,,;r,,;A1 +p-q 

(all permissible integers p, q, r). 

It is straightforward to verify directly that 

dim(D)::o 0 dim[D(A j +p-r,AI +A2-p-q)], 
(p.o.r) 

but this equality of course does not constitute a proof 
of the theorem. However, by virtue of the uniqueness 
of the decomposition of the character of a representa
tion into the sum of the characters of its irreducible 
components, the theorem will be proved as soon as we 
have established the equality 

A2 Al 1I.l+P-q 

X=000 
p=o 0=0 ,.,.0 

in which X is the character of 15, i. e., the restriction 
to iI of the characteE, XA of D and X1I.-P"2-Q ("'1+2a2)-r("I+"'2) 

is the character of D(A1 + P - r, Al + A2 - P - q). 

For all results on characters used here we refer the 
reader to the Jacobson~; although, due to our special 
choice of base field, the formal exponentials can here 
be thought of as complex valued functions e(M) :H - C 
defined by e (M) : h - exp{(M, h)} with any Ai in H. 

LetA =LSEW (detS)S and A ::o2;SEW (detS)S b~the 
alternation operators constructed on Wand W. Further, 
let () and 5' be the half-sum of the positive roots of G2 
and of .42 c G2 : IS = '6 + Qll + 2Q12. We need the following 
lemma. 
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Lemma: 

Ae(li) = <Ae(~». F, 

where 

and 

'SF = F for all SE W. 
Proof: SinceAe(li) =e(li) n 0<)0 [1- e(- 0')] (Ref. 9, p. 

250), a direct computation gives the result. The in
variance of F with respect to W follows at once from 
the fact that {O't + 20'2, - 0'2, - O't - 0'2} is the weight set 
of the represe~ation belonging to ~-6 contained in the 
restriction to A2 C G2 of the adjoint representation of 
~. . 

Proof of the theorem: Starting from the Weyl formula 
(Ref. 9, p. 255), 

XA ·Ae(li) =Ae(A + 0), 

it suffices to show that 

A2 At At +p..q 

00 0 XA-PO<2-Q (O<1+2O<2)-r(O<1+"'2)Ae(0)=Ae(A+li). 
p=O .=0 roO 

Using the above lemma and the Weyl formula again, this 
time for the character XA-P"'2-. (0<1+2 0<2 )-r(O<1+O<2)' this 
equality becomes 
A2 Al Al +P-q 

60 6 A[e(A-p0'2-q(0'1+20'2)-r(0'1+0'2)+6).F] 
p=o .=0 T=O 

=Ae(A + 0). 

Let B denote the left-hand side; since 

A + '5 = A + 0 - 0'1 - 20'2 

= (AI + 1)(0'1 + Q2) + (AI + A2 + 1)(0'1 + 20'2), 
A2 Al A~-. 

B=06 D ATe (-P0'2 + (A1+A2-P+1)(0'1+ 20'2) 
p=o .=0 r=0 

+ (AI - r + 1)(0'1 + 0'2»' F]. 

The sums are easy to evaluate: They are geometric 
progressions of ratio e(- 0'1 - 0'2), e(- 0'2), and 
e (O't + 20'2)' The denominators in the formulas cancel 
with the elements of F. Taking into account the fact 
that if SpM=Mfor some SpE Wand MEH, then Ae (M) 

= 0, we obtain 

B =A[e«(A l + 1)(0'1 + 0'2) + (AI + A2 + 2)(0'1 + 20'2» 

- e«Al + 1)(0'1 + 20'2) + (AI + A2 + 2)(0'1 + 0'2»], 

3. CONSTRUCTION OF THE REPRESENTATIONS D 

but 

and 

(AI + 1)(0'1 + 0'2) + (AI + A2 + 2)(Q1 + 20'2) = A + <5. 

Therefore, 

B =A[e(A + 0) - e(S", (A + 0»], 
2 

i. e., by virtue of (1. 3) (detSO<2 =-1) 

B=Ae(A+o). _ 

This theorem furnishes a very remarkable labeling 
for the basis vectors of a representation D E ~2 by 
means of two Gel'fand-Tseitlin patterns. 10 

Setting 

a=A1 +A2-q, b=A2-p, c=a-r, 

we obtain, form the theorem, the inequalities 

A2 "'" a"'" Al + A2, 0"'" b"", A2, b"'" c "'" a 

and, from (2.1), 

which gives the label 

[

At + A2 A2 
a b 

c 

o Al + c a + b - A2 OJ 
de. (2.2) 

f 

The pattern on the right givEts a label for the basis 
vectors of the representation D(Mt. M 2) associated with 
the pattern on the left. According to the usual rules of 
correspondance, the vector associated with such a label 
belongs to the weight 

P= A - (AI + A2 - a)(O'l + 20'2) - (A2 - b)0'2 

- (a - C)(O'l + 0'2) - (AI + C - d)(20'1 + 30'2) 

- (a + b - A2 - e)(O'l + 30'2) - (d - f)0'1' 

It is quite surprising that the representations 
D(Mt. M 2 ) can be labeled by the pattern 

[
AI + A2 A2 OJ 

a b , 
C 

which is the pattern of a representation of A2 belonging 
to ~2! This labeling should be compared with the 
one given some years ago by Lam and Sharp. It 

We look for "unitary" representations of G2• By this we mean that, with respect to a Hermitian scalar product 
( I ): vx V- C defined on the carrier space Vof the representation, we impose the conditions 

E~ = E _p for all p E ~, Ht = H for all h E H. 

It can be shown that such representations always exist (in using our special choice of structure constants and the 
existence of a compact real form of G2). 

Starting from any orthonormal basis of Z consisting of weight vectors of D, we know how to construct an ortho
normal basis of V. In fact if we write, according to the above labeling, these basis vectors of Z under the form 
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[

AI + A2 A2 ° Al + C a + b - A2 OJ 
<p a b Al + C a + b - A2 , 

C AI+c 

an orthonormal basis vector of V is given by 

L
!\I + A2 A2 ° Al + c a + b - A2 OJ ra + b J [AI + A2 

<p a b d e =S '<P a 
c I d,e,! 

b a+b- A, J. 
c 

where S(~:::f) denotes the operator of Asherova and Smirnov8 which is written here as 
Al +c-d . 

s[a+b,C]_C ,,[ t ] (d-e+l)! E;4-!+IE4+b-A2 .... +IEAI+c-d-1 
d. e.1 - ~ Al + C - d (d - e + i + I)! -"'I -"'1-3"'2 -Z-"'I-S"'2 

with 

( 
(d-a-b)!(d+l)!(AI-e+l)!e!(f-e)! )1/2 

C = (a + b _ A2 - e)! (AI + C - d)! (AI + A2 - a - b + c)! (a + b - A2)! (d - e) ! (d - e + I)! (d _ I)! . (3. 1) 

The action of the generators of ..42 c G2 on this basis is well known: It is given by the Gel'fand-Tseitlin formulas. 10 
If we write for simplicity 

[

AI + A2 A2 ° Al + c a + b - A2 
<p a b d 

c I 
these formulas take here the following form 

H"'I<P[d I e]=[2/ _(d+e)]<p[d I eJ. H"'I+S"'2<P[d I e]=[2(d+e)-I-(AI +a+b+c-A2)]<p[d Ie} 

E"'I<P[d I e]=[(d-f)(f-e+l)]1/2<p[d 1+1 e]. E_"'I<P[d I eJ=[(d-l+l)(f-e)]1/2<p[d 1-1 e]. 

E"'I+SO<2<P[d I eJ=CI<P[d+l I e]+c2<p[d I e+l], E_"'I_S"'2<P[d I e]=KI<P[d-l I e]+K2<P[d I e-IJ. 
(3.2) 

_[ (AI + C - d)(A2 - a - b + d + l)(d + 2)(d - I + l)J 1/2 K = [(AI + c - d + 1)(A2 - a - b + d)(d + l)(d - I)] 1 /2 
CI - (d _ e + l)(d - e + 2) 1 (d - e)(d - e + 1) , 

C _ [(AI + C - e + l)(a + b - A2 - e)(e + 1) (f - e)] 1/2 K -l (AI + c - e + 2)(a + b - A2 - e + l)e (f - e + 1 )J 1/2 
2- (d-e)(d-e+l) 2- (d-e+l)(d-e+2) . 

4. NAGEL-MOSHINSKY TYPE OPERATORS FOR THE 
REPRESENTATIONS OF G2 :J A2 

If, as we have just seen, the representatives of A2 
in End(V) have matrix elements independent of the 
chosen basis for Z, it is of course not the case for 
those of G2• Actually the whole problem of the construc
tion of the representations D of G2 :J A2 consists pre
cisely of constructing a basis of Z and of deducing from 
it the action of the generators of G2\A 2 on the latter. 
However, we will show that this problem can be Simpli
fied somewhat by defining on Z some operators (the 
equivalent ones for G2 :J A2 of those introduced by Nagel 
and Moshinsky for the irreducible representations of 
An:J A n_1 7). 

Let rr: V - Z be the projection operator associated 
with Z (rr 2 = rr, rrt ~ rr). If T: V - V is a linear operator, 
we will denote by T the restriction to Z of the operator 
TIm. Since rrt =rr, we have (rrm)t =rrTtrr and there
for Tt =:: ;ft. (~should be clear that ift is the Hermitian 
conjugate of T: Z - Z with respect to the restriction to 
Z x Z of the Hermitian scalar product. ) 

By definition of Z, 

Ep:Z-{O}, (E_pZ)n Z={O}, 

when p is a positive root of ..42 c G2 ; therefore E,.", = 0, 
I 
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1~"("'1;3"'2) = 0, and E"~"'1+3"'2) = 0. On the other hand, 
H = H (more exactly H is equal to the restriction of H to 
Z) for all hE H, which implies 

[ii, Ep] = (h, p)Ep (p E L:). 

For the remaining generators of G2 we obtain (all 
operators restricted to Z) 

- -
E "'I +2"'2 = E "'1 +2"'2' E "'1 +"'2 = E"'I +"'2' 
- -1 
E"'2=E"'2- (H"'1 +2) E_"'IE "'I+"'2' 

E -E - (H +2)-IE E 
-"'2 - -"'2 "'1+3"'2 -"'1-3"'2 "'1+2"'2' 

E =::E +(H +2)-IE E - (H +2)-1 
-"'1-"'2 -"'1-"'2 "'I -"'I -"'2 "'I 

X(H +3)-IE E E 
2"'1+3"'2 -"'I -"'1-3"'2 "'1+2"'2 (4.1) 

- (H +3)-IE E 
2"'1+3"'2 -2"'1-3"'2 "'1+2"'2' 

E -E +(H +2)-IE E -"'1-2"'2 - -"'1-2"'2 "'1+3"'2 -"'1-3"'2 "'2 
(H + 2)-I(H + 3)-IE 

- "'1+3"'2 2"'1+3"'2 -"'1-3"'2 
xE E + (H +3)-IE E 

-"'I "'1+"'2 2"'1+3"'2 -"'1-3"'2 "'1+"'2' 

The first two eq.ualities are obvious since E"'I+2"'2 and 
E"'I+"'2 commute With E", and E"'I 3"'2 (and therefore 
E"'1+2"'2: Z - Z , E"'1+"'2:Z-Z), All the others are found 
in the same manner, Verify, for example, the third one. 
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Let v ME Z be a weight vector belonging to the weight 
M. By the above formula, 

where MI = (M, al)' 

We must have 

EO/IE"'2VM=0 and EO/I+3O/2EO/2VM=0. 

The second condition is trivially verified taking into ac
count the commutation relations in G2• For the first 
one, we have 

1 
=EO/I+O/2VM- MI +1 (MI +1)EO/I+O/2VM =0. 

It is clear that the inverse operators appearing in 
the formulas (4.1) are well defined since for each 

be an orthonormal basis of weight vectors of Z. Then 

iiO/lef> (:b) = (AI + A2 - a - b + c)ef> (a:), 

and since 

[ii, Ep] = (h, p)Ep, 

we obtain 

E ef>(ab)= /, A Ct O/2)(a b C)ef>(a±1 +i 
·0/2 C I~l I " 

(4.2) 

where the indices i, j, and k run in principle over all 
values permissible by the Gel'fand-Tseitlin patterns. 
It is impossible to say more before having an explicit 
basis {ef>(a:)} for Z. 

If ef>(AI+A2 AI+A2 A2) is a maximal (unitary) vector of D 
it is not very difficult to verify that the set of vectors of 
Z, 

{
-a-c -AI+A -a-A2-b (AI +A2 A2)} 
E_O/I_O/2E_O/I;tO/2E_O/2 ef> AI + A2 ' (4.3) 

where the numbers a, b, and c are any integers com-
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weight vector v ME Z we have 

H 0/1 V M = (M, O'I)v M and H "'I +3 "2VIf = U\J, 0'1 + 3 0'2)v M 

with (lVI, 0'1) ~ 0, (M, 0'1 + 3(2) ~ O. (Recall that ,\1 is a 
maximal weight for some representation of ,.12. ) 

The commutation relations (or rather the generalized 
commutation relations) of these operators are given in 
Appendix A. All these formulas are obtained directly 
from the expressions (4.1) for the operators Ep. Some 
si~plificat~on~ occur Jf w~ take into account that E~ 
= E_p and [Ep, E" F = [E_", E_p]. 

Although the weight set attached to Z can be put, as 
we saw it, in correspondance with the weight set (in
cluding multiplicities) of an irreducible representation 
~f A 2 , jt is clear tha!. the eight operators jj "2' jj 0/1 +"2' 

E.O/2, E'<"I+"2)' and E'<O/1+2"2) do not generate [in End(Z)] 
a Lie algebra of type A2 in spite of a "slight re
semblance" in their commutation relations (a similar 
situation appears in Ref. 7 with the AI xAI x· .. xAI Lie 
algebra). ~ 

Let 

a+b-A:JI 
'patible with the pattern 

[

AI +A2 A2 J 
a b , 

C 

are linearly independent and consequently form a basis 
for Z. It is then easy, using the generalized commuta
tion relations ot Appendix A, to determine the action of 
the generators E" on them and with some additional 
effort to normalize them. In general however, with the 
exception of the representations belonging to the classes 
~ and &,;.2 this basis is not on orthonormal one. 
Vectors of this type, with the same a + band c belong to 
the same weight of D and some orthogonalization tech
nique is needed in ord!,!r to extract from them an equipo
tent set of orthogonal vectors. Such a procedure in
volves of course a large amount of arbitrariness; a 
more systematic way consists of constructing an ortho
normal basis compatible with the "path-labels," i. e. , 
constructing a basis such that 

[From this follows E"'I+2"'2ef> (aab)_ef>(a+1 a+1 b) and E_"2ef> (a;) 
_ef>(a a b-I).] 

An algorithm can be developed consisting of the 
systematic calculation of the basis vectors defined by 
"path-labels," starting from ef> (AI +A2 AI +A2 A2). Although 
a little easier to handle than the algorithms mentioned 
in the Introduction, it leads to very messy computations. 
For any given representation however this algorithm 
can be carried out by comfuter. We limit ourself here 
to the tractable cases ~ and ~ for which the basis 
vectors are of the form (4.3). 
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AIO OA2 
5. THE REPRESENTATIONS ~ AND a-. 

A 
AI 0 
.~ 

An orthonormal basis of Z 

Ha cO] e • L' a : a a 

is given by 

a 

[
a 0] _ ( a-c i(2At- i + 3)(2At + a - i+ 4}(a - i + 1) Ar j(3At- j + 4).(At- j + 1))-1/~ Eo-c EA,ro tfJ [At 0] 

tfJ c - l}1 3(AI -a-i+3)(AI -i+2) J.1 3(AI -J+2) -"1·"2 - 1-2"2 AI • 

The orthogonality is obvious since any two basis vectors belong to different weights. The normalization factor is 
obtained from the two equalities 

- -I [At 0] _ I (3AI -I + 4)(At -I + 1) £1-1 n,[AI 0] 
E"t+2"'2E -"'1-2"'2 tfJ AI - 3(A1-Z+2) -"1-2"2'1-' AI ' 

- -I [At 0]_Z(3Al-Z+3)(2At+a-Z+4}(a-Z+1)£I_t [AI 0] 
E"'I+C"zE·"j-"'2¢ At - 3(AI +a-I+3)(A j -l+2) -"1-"2 Aj , 

w~ch follow from the ge~ralized commutation relations of Appendix A. [Recall £"2 tfJ (AI Al O)=£"1+2"2¢(AI Aj 0) 
=EIJ/I+"2tfJ(Aj Aj °)=0 and Eaj+lJl2tfJ(a a °)=0, J _ 

Thanks to these same relations, we deduce the action of the operators Ep on these basis vectors, 

- [a OJ _[ (a - c)(c + 1)(2At- a + c + 3)(2Al +c + 4)] j/2A,[a 0] 
E Clj +C"2tfJ c - 3(A j +c+3)(A j -a+c+2) 'I-' c+1 ' 

- [a 0]_[(a-c+1)C(2AI-a+c+2)(2Aj+C+3)]1 /2n,[a 0] 
E-aj •a2 tfJ C - 3(A I +c+2)(A j -a+c+1) 'I-' c-1 ' 

- [a 0J_[(AI-a)(c+1)(AI+a+3}(2A1+C+4)]1 / 2n,[a+1 01 
Eal+2a2tfJ c - 3(A j +c+3)(a+2) 'I-' c+1 J' 

(5. 1) 
£ [a 0J=[(Aj-a+1)C(AI+a+2)(2AI+C+3)]j/2n,[a-1 0] 

-at-2IJ/2¢ C 3(At +c+2)(a+2) 'I-' c-1' 

£ [a 0]= _[(Aj - a)(a- c + 1)(At +a +3)(2At- a +c +2)J t/2 [a + 1 
a2¢ C 3(At -a+c+1)(a+2) ¢ c 

£ [a 0]=_[ (At- a + 1)(a- c)(At +a + 2)(2Al- a +c +3)] 1/2 ra-1 
-a2 tfJ 

C 3(At -a+c+2)(a+1) tfJL 

o A2 

B. ~l [A2 An bo]r~ho[n~:mal :SiS 0; :' b J ~ 
¢ = 1f; Az b c b , 

c 
c c 

is given by 

A, [Az bJ = (A~-C i (2Az - i + 5)(A2 - i - b + 1) Aft j (A2 - j + 1)\ -1/2 EA~-c £A2-bn,[A2 A2 ] 
'P C i=1 3(A2 - i + 3) J=I 3 ") -&1-"2 -a2 'I-' Az 

and the action of the generators Ep on these vectors is furnished by the formulas 

£ n,[A2 b]=[(AZ-C)(C-b+1)(AZ+C+5)]II
Z
n,[A2 b] 

Clt+az'P C 3(c+3) 'I' c+1 ' 

£ n,[AZ b]=[(AZ-C+1)(C-b)(A2+C+4)]1/2 [A2 b] 
-a1-a2 '1' C 3(c+2) ¢ c-1 ' 

(5.2) 

6. MATRIX ELEMENTS OF THE GENERATORS Ep 

Since, by (3.2), the matrix elements of the generators of the subalgebra A2 are known, it is easy to ensure one
self that the matrix elements of all generators of Gz will be calculable (in making use of the commutation relations 

2003 J. Math. Phys., Vol. 17, No. 11, November 1976 M. Perroud 2003 



                                                                                                                                    

in G2) as soon as those of two other generators, for example E"I+2"2 and E'<ll,2"2' are known. Actually, thanks to 
the condition E: = E,,,,, it is sufficient to know only one of the two. 

We show here that the matrix elements of E"t+2"'2 are expressed very simply with the help of the coefficients 
At"")(a, b, c) appearing in formulas (4.3). 

After some computations, using the Asherova-Smirnov operator, the commutation relations of Gz and the defini, 
tions (4.1) of the E ... it can be established that 

E s[a+b, 
"'1+2" d 2 , e, 

eJ ( (d+2)(e+1) )t/2 [a+b+1, C+1J-
f = (a+b-A2+1)(At +c+2) S d+1, e+1, 1+1 E"I+2"2 

_ ( (a + b - A2 - e) (d - a - b + A2 + 1) ) t 1
2 

s[a + b - 1, c ] E 
(A t +Az-a-b+c+l)(a+b-A2) d, e,1 ·"'2 

( 
(At+c-d)(At+c-e+1) ) t/2

s
[a+b, 

- (A t +A2-a-b+c)(At +c+1) d, 

Acting with the two sides of this expression on the vector 

[

Ai +A2 Az 0 At +c a+b-A2 OJ 
<p a b d e 

c f 

we obtain [taking into account the formulas (4.3)1: 

[

Ai + Az A2 ° Ai + c a + b - A2 OJ 
E", +2", <p a b d e 

1 2 C f 

) 
112 [AI + A2 A2 ° - 6 ( (d+2)(e+1) A!"1+2"'2)(a b e)l/! a+1+i b-i 

- IE:I (a+b-A2+1)(A1 +c+2) • , , c+1 

Al + C + 1 a + b - A2 + 1 J 
d+l e+l 

f+ 1 

)

1/2 Lt+A2 _ 6 ((a+b-A2-e)(d-a-b+A2+ 1) Aj'''2)(a,b,c)l/! 
JE:J (Ai +A 2 -a-b+c+1)(a+b-A2) 

A2 
a-I +j 

c 
b-j 

1 

o At + c + 1 a + b - A2 
b-k d 

f 
The representations belonging to the classes ~~ and &...6 are thus completely constructed since the coefficients 
Al"')(a, b, c) are given by the formulas (5.1) and (5.2). 
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APPENDIX A: GENERALIZED COMMUTATION 
RELATIONS 

W M is any weight vector of Z: 

;lIt = (M, at), M2 = (M, 0'1 + 30'2), 

-I .'VIz +2 1-

E"'t+z"'zE·"'2WM = ,'\12 -l +2 E''''2E '''1+2C>.2wM 

2004 J. Math. Phys., Vol. 17, No.11, November 1976 

1 

13 

+ _1_ 1 (2A11 + 2""12 - l + 5) EI'1 E W 
13 Ait + M2 -1 + 3 ,"'t,2"'2 ''''2 M, 

- -I _ M1 + 2 EI E U' 
E'''2E''''t''''2WM - 1\11 -l + 2 ''''1''''2 ''''2 M 

__ I_l(2Ml- l + 3)EI_l E W 
13 1111 -l + 2 ''''t-'''2 -"'1-2"'2 'M, 

- -I _ Mt + M2 +1.... -I - , 

E "'1+2C>.2E''''t'C>.2W M - ]1"[1 + A12 -1 + 3 E''''I''''2E "'1+Z"'2U M 
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M2 -l + 2 E~;"ti-"'1-2"'2E"'I+2"'2wM 
+ _1_ l(l-l)(Ml + M2 + 3) 

13 (Ml + 1 + 1)(M2 -l + 2) 

-1-1 l(:"'12 + 2) 
-:-M-:-1--':"'Z::-"+-:"2 E_"'1_",~E"'2E_"'2wM - (M2 + l)(Ml + M2 -l + 3) 

xEI - 1 E E w + _1_ l(l-l) 
-"'1-"2 -"1-2"'2 "1+2"'2 M 13 Ml -l + 2 

-1-2 - - 1 (M2 + 2)l(l-1) 
XE_"'I-"2E"2E_"1-2"2wM - 13 (M2 + l)(Ml + M2 -l + 3) 

xEI - 2 E E W -"1-"'2 -"'r2"'2 "2 M, 
E EI W 

"1+2"2 -"1-2"2 M 

-I - l( 2(1-1) ) 
=E-"1-2"'2E"I+2"2WM + 3" Ml + 2M2 -l + 1- Ml + M2 -l +3 

xEI-l 1 £1-1 E E W 
-"'1-2"'2 W M - NI2 -l + 2 -"1-2"'2 -"'2 "'2 M 

l(Ml+2) -1-1 - -
(Ml + l)(Ml + M2 -l + 3) E_"'1-2"'2E_"'I-"'2E"'I+"'2wM 

+ _1_ (Ml + l)l(l-l) 
13 (Ml + M2 -l + 3)(M2 -l + 2) 

xEI
-
2 E E W 

-"'1-2 "'2 -"'2 -"'1-"'2 M' 

APPENDIX B: THE "PATH-LABELS" 

Let A cA be a complex semisimple subalgebra of a 
semisimple Lie algebra. If A =fi (f) [. (f) L is a Cartan 
decomposition of A, we know4 there always exists a 
Cartan decomposition A =H(f) L (f) L with ii c;;,H, Z. c L •. 
The Lie algebra A admits a direct sum decomposition 
(actually an orthogonal one with respect to the Killing 
form on,4), 

A =B(f)A, 

with [A, A] c;;, A, [B,A]c;;,B. 

In the subalgebra L +=B+(f)[. (B+=[.n B) there al
ways exists a basis {xj, 0 •• ,xn,Yh." ,Ym} (xi E B+, 
Y! E [.) and an order relation ( .. ) on the set of subspaces 
{Cxj, . .. ,Cx., CYj, • .. ,CyJ such that 0 .. CY!" CXi and 
[CXI' CxJ] .. max{Cx/> Cx!}. 

For each irreducible and finite dimensional represen
tation D:A - End(V), we define the subspace 

Z={vEV:D(x)v=O 'f/ xELJ. 

For all v E Z, v#- 0, we associate the integers ak de
fined by [Dtx)o=I] 

Dtxl)"ID(xi +d"i+l . .. Dtxn)"nv #- 0, 

D(X i )"i+1D(Xi +l)"I+l' .. D(xn)"nv = O. 

This correspondance 

v I- (ai, ... , an) 

2005 J. Math. Phys., Vol. 17, No. 11, November 1976 

(B1) 

is obviously a function 

Z-{O}-Nx" ·xN. 

Let S denote the range of this function. 

The following proposition is a direct consequence of 
the definition of the numbers ak and of the order relation 
.. . 

Proposition 1: 'f/ 0 <s c <s ai' 'f/ c + 1 <S j <S n, 

1. DtxJ)D(xi)C D(xi+l)"i+l .. . Dtxn)"nv=O, 

2. D(xi)C D(Xi+l)"l+l •.. D(xn)"nv E Z. 

On NX • •. x N we consider the following order relation: 
(aj, ••• ,an) ~ (b1, ... ,bn) if the first nonzero al - b i 
starting from i = 1 is nonnegative. From this, there 
exists an order preserving function g: S-{l, 2, ... , 
v - 1, v}. [If (aj, . •. ,an) ~ (bj, ... ,bn), then g(aj, •.. ,an) 
~ g(b1, •.. , bn). ] 

Now define the following subspaces of Z: 

Z(l)={v E Z, Dtxl)"I ••. Dtxn)"nv E Z<1J, 

where (at. . .. ,an) E S, i =g(aj, ••. ,an) and 

Z(I)={VEZ, D(xi)v=O, l<si<sn}. 

(Z (1) is the one- dimensional subspace of the maximal 
vectors of the representation D and Z (v) = Z. ) 

It follows from the order relation on S that if i ~ i', 
then Z (i') c;;, Z (0 •• " Z admits therefore a filtration 
Z (1) c;;, Z (2) c;;, ••• c;;, Z(v); putting Z (0) ={O}c Z (I), we have 

Proposition 2: dim(Z(l)/Z(i_l)) = 1, l<Si<Sv. 

Proof: By definition of (at. • .• ,an) there always exist 
vectors v E Z (I) and viz (i-I) (i #- 0). If no two such 
linearly independent vectors exist, the proposition is 
proved. Suppose then that VI and v2 are linearly indepen
dent and vI> v2 E Z (i) but vj, V2 i Z (i-I)' We have 

D(Xl)al . .. D(xn)anVI #- 0 (E Z (I)), 

Dtxl)al' .. D(xn)anV2 #- 0 (E Z (I)), 

Since dimZ (I) = 1, there must exist a number A#-O such 
that 

D(Xl)al .. . D(Xn)"nVI = AD(Xl)"I . •• D(xn)anv2 . 

Hence 

D(Xl)"I . .. Dtxn)"n(VI - AV2) = 0, 

which means VI - AV2 E Z (i-I) and consequently Z (i) 
= CVl (f) Z(I_I)' 

FIG. 3. Typical "path-labels." 

.. -------"', 
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./ / ~, 

./ / I '" 

/ I 

I 

FIG. 4. The "A2 like hexagonal weights diagram" of the max
imal weights of D. 

Corollary: 

1. lJ=dimZ, 

2. Z is freely generated by S and consequently the 
elements (at, . .. ,an) constitute labels for a basis of Z. 
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Definition (El) suggests the terminology used: The 
vector v is sent onto Z (0 by successive applications of 
the operators D(x,) (1'" i '" n), performing a particular 
"path" in Z. In cases when A is a regular subalgebra, 
suc h a path can be visualized in the weight diagram of 
A (Fig. 3). 

This method, conjugated if necessary with the charac
ter one (as in our theorem), gives a complete answer 
to the labeling problem in many given cases and furnish
es an effective algorithm allowing a constructing of a 
basis on the space of the representations. 
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Nonlinear response of equilibrium strongly coupled Fermi 
fluids. I. Formal development 

L. E. Reichl 

Center for Statistical Mechanics and Thermodynamics, The University of Texas, Austin, Texas 78712 
(Received 10 September 1975) 

This is Paper I of a series of three papers in which a self-consistent propagator resummation of self-energy 
effects in a strongly coupled Fermi fluid, in the presence of an external magnetic field, is performed. In the 
present paper, an exact expression is obtained for the grand potential in the presence of an external 
magnetic field which has a constant and a spatially varying part. The grand partition function and grand 
potential are written in terms of antisymmetrized cluster expansions. The cluster functions are then 
expanded in terms of a binary expansion. And, finally, an expression for the grand potential is obtained in 
terms of the reaction matrix for two-body scattering and in a form suitable for the subsequent propagator 
resummation. 

I. INTRODUCTION 

In the study of real fluids, both classical and quantum, 
one is confronted with an interaction potential between 
particles, of the Lennard-Jones type, in which there 
is a very strong repulsive core and a short range at
tractive region which may admit bound states. Con
ventional perturbation theory is not able to cope with 
either of these possibilities. 

As is well known, the first successful treatment of 
such systems was due to work by Ursen1 and Mayer2,3 

on the cluster expansion of thermodynamic properties 
of classical systems. They were able to define the 
clusters in terms of an effective interaction which re
mains well behaved even for an infinite hard core. The 
method was extended to quantum systems with Boltz
mann statistics by Kahn and Uhlenbeck,4 and to 
quantum systems with Bose-Einstein and Fermi-Dirac 
statistics by Lee and Yang. 5 Lee and Yang were able to 
perform a partial resummation of the quantum cluster 
expansion and to discuss in some detail the properties 
of dilute hard sphere Bose gases. The work begun by 
Lee and Yang was continued by Mohling,6 who per
formed a self-consistent resummation of self-energy 
effects in the quantum cluster expansions through in
troduction of his A transformation. TutUe7 has since 
shown that the A transformation is equivalent to a gen
eralized Hartree- Fock transformation. 

In general, when one performs a quantum perturba
tion or binary expansion of equilibrium or nonequilib
rium quantities, the expansions are found to contain 
self-energy structures. In diagrammatic language, 
these are parts of a diagram which can be removed by 
cutting two lines of the same momentum and energy. 
They appear if momentum and energy is conserved 
during an interaction or sequence of interactions. One 
is usually interested in two limiting regions: First, the 
thermodynamic limit (particle number and volume be
come infinite in such a way that density remains con
stant) because this allows one to neglect spurious terms 
in (N-I), where N is the particle number' and second 
the zero temperature limit for equilibri~m q~antities;' or 
the long time limit for nonequilibrium quantities. 

In the thermodynamic limit each term (diagram) in 
the expansion of a given equilibrium or nonequilibrium 
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quantity remains well behaved, even if it contains a 
self-energy structure. However, each term (diagram) 
which contains self-energy structures will have a 
"secular" (polynomial) dependence on inverse tempera
ture (for an equilibrium quantity) or on time (for a 
nonequilibrium quantity). These secular terms must be 
resummed at low temperatures or after a long time, or 
the expansions can become unbounded. 

The Hartree-Fock type of resummation is just one 
of several methods which exist for resumming self
energy effects in quantum expansions. It has been ap
plied to both equilibriumS and nonequilibrium9,10 pertur
bation expansions. Mohling's work is the first in which 
it has been applied systematically to a binary expan
sion. However, the Hartree-Fock method suffers from 
regularization problems. 11 In the Hartree-Fock proce
dure, one removes the secular terms by breaking apart 
diagrams with self-energy structures and explicitly re
moving that part of a diagram which has the secular 
dependence, and placing it in an exponentiaL As a re
sult, one is left with two pieces, neither of which is 
well behaved in the thermodynamic limit, because of 
uncompensated energy denominators which can go to 
zero. 

There is, however, another method for removing 
self-energy structures which does not suffer from the 
above difficulties. This is the so-called propagator or 
Dyson renormalization of quantum field theory. 12 

Propagator renormalization is accomplished by adding 
together all terms with same basic topological struc
ture, but different numbers and types of self-energy 
structure. This leads to a single composite term with 
resummed propagators. One never has to break apart a 
diagram, and therefore is always working with well 
behaved quantities. 

Part of the purpose of this and two subsequent papers 
is to explore the possibility of performing a propagator 
resummation on the quantum binary expansion for 
equilibrium systems. As we shall see, this is not com
pletely straightforward, because the binary expansion 
lacks much of the symmetry that the perturbation ex
pansion has. As a result the usual method of resumma
Uon (the Matsubara method) does not apply. However, 
as we shall show in a subsequent paper, it is possible to 
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introduce a self-consistent propagator resummation of 
self-energy effects for the quantum binary expansion of 
an equilibrium system. 

In view of the recent discovery of superfluid phas
esIS

•
14 in liquid Hes, such a study is certainly of interest. 

The hard core of the He~ atom plays a very important 
role in determining which relative angular momentum 
states will allow the formation of bound pairs in the 

,liquid. Therefore, one would like to have a theory 
which can treat the hard core, and the attractive region 
of the He3 potential, in a consistent manner. At pres
ent, one of the major tools for studying the phenomenol
ogy of liquid He3 is perturbation theory, but one must 
assume that the potential used is some sort of effective 
potential, and that objects described by the perturba
tion expansion are quasiparticles. Microscopic infor
mation about the scattering of quasiparticles is ob
tained from studying the T matrix or reaction matrix 
for scattering of He3 atoms. 

In this and subsequent papers, we will perhaps be 
able to obtain a clearer understanding as to why pertur
bation theories work as well as they do. Indeed we will 
find that the most coherent part of the binary expan
sion corresponds to precisely those terms we need to 
Jescribe the phenomenology of liquid He3 (spin and 
density fluctuations) and that all quantities that appear 
in the expansion can be directly calculated in terms of 
the He3 potential and are well behaved. 

However, as the title indicates we are not solely in
terested in obtaining a mathematically well behaved 
microscopic theory of liquid He3• We are also interest
ed in studying the way in which an external applied field 
affects the thermodynamic properties of a hard sphere 
quantum fluid. Normally, when studying the response of 
such systems, one assumes that the external applied 
field is small and, therefore, that one can neglect all 
nonlinear terms in the external field relative to the 
linear term. However, as well shall see, one must be 
careful, especially when going past the linear regime. 
In equilibrium systems the nonlinear terms can be ac
companied by secular dependence on the inverse tem
perature. Therefore, in the low temperature limit the 
usual argument that nonlinear terms can be neglected 
relative to the linear term must be modified. 

In the present paper, we will be concerned primarily 
with the derivation of an exact expression for the grand 
potential of a strongly coupled Fermi fluid in the pres
ence of an external magnetic field. Our expression will 
be written in terms of the reaction matrix for two body 
scattering in the fluid, and will be written in a form 
suitable for our diSCUSSion, in subsequent papers, of 
the magnetic response and the resummation of self
energy effects. 

We begin our discussion in Sec. IT by deriving a 
cluster expansion for the grand partition function of a 
Fermi fluid in the presence of an external magnetic 
field, and we define the resulting cluster operators in 
terms of a binary expansion. In Sec. ITI, we write the 
grand potential in terms of symmetrized cluster func
tions and introduce a diagrammatic expansion in terms 
of "dynamical" cluster functions. In Sec. N, we write 
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the dynamical cluster functions in terms of a binary 
expansion; and finally in Sec. V, we write the grand 
potential in terms of a binary expansion. 

The binary expansion differs from perturbation ex
pansions in that each binary operator depends on two 
temperatures rather than just one temperature as 
would be the case for a perturbation expansion. 
Furthermore, certain repeated interactions between 
pairs of particles are forbidden. In Sec. VI, we write 
an explicit expression for matrix elements of the binary 
operator in terms of reaction matrices. We then find 
that matrix elements of the binary operator break into 
two parts, one part which looks very much like matrix 
elements appearing in perturbation expansions but is 
defined in terms of a reaction matrix, and another part, 
also defined in terms of reaction matrices but with no 
counterpart in perturbation theory. In Sec. VIT, we 
write a diagrammatic expansion for the grand potential 
explicitly in terms of reaction matrices and discuss 
some interesting features of this expanSion. Finally in 
Sec. VIII, we make some concluding remarks. 

II. CLUSTER EXPANSION OF THE GRAND 
PARTITION FUNCTION 

Let us consider a system of spin t fermions, with 
magnetic moment jJ., which interact with one another 
via a spherically symmetric potential V(I rjj I) (rjj 
is the relative position between particles i and j). We 
shall assume that V( 1 r jj I) is short ranged, with a 
large repulsive core for small values of 1 r ij 1 and a 
weak attractive region for larger values of 1 rjj I. 

We shall apply an external magnetic field to this 
system, of the form 

H(r)= (Ho +Hrcos~· r))z. (IT.l) 

The external field is directed in the z direction, but 
consists of two parts; one part, Ho is constant and the 
other part, Hrcos~' r), oscillates in space. We shall 
always assume that ko oF O. 

The grand partition function for this system is 

(IT. 2) 

where 

H N' '" Ht - gN - Mm 0 + VN (n.3) 

and 

(II. 4) 

In Eq. (II. 2), Tr N denotes trace with respect to a com
plete set of N- body states; and {3 == (k B T)"l, where k B is 
Boltzmann's constant and T is the absolute temperature. 
In Eq. (n. 3), H~ is the kinetic energy of the system 

(II. 5) 

We have set Planck's constant equal to 1, g is the 
chemical potential, and VN is the interaction potential 
energy 

N<N_ll /2 

vN
== 6 V". 

,,=1 

L.E, Reichl 
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[p denotes a particular pair of particles and V" 
'= V( I r" I ). ] M~ is the space independent magnetization 
operator in the z direction which we shall write 

N 

M~=Jl641' ;=1 
(n.7) 

In Eq. (n. 7),4 I =± t denotes eigenvalues of the z com
ponent of spin for the ith particle. The spin of the ith 
particle is 6 1 == ~I' where (11 is the Pauli spin matrix. 
In Eq. (n.4), MN (r) is the space dependent magnetiza
tion operator 

N 

MN(r) = Jl :0 6 1 (1 r)(rl);, 
1=1 

(n.8) 

where (I r)(r 1)1 operates on the state of particle i only. 
We may now write down the following expansion for the 
operator exp[ - (3(HN' + AHN)] which appears in the grand 
partition function 

exp[ - (3(HN' + tillN) 

=exp(- (3Ht>WN({3, 0) 

T f: (_l)n 108 
dAI fo~1 dA2'" 10~n-ldAnexp(- {3Ht> 

n=1 

X wN ({3, AI) tillN (AI) WN (AI> A2) x· .. X tillN (An) WN (An' 0), 

(n.9) 

where 

tillN (A) = exp(AHntillN exp(- AHn (n.l0) 

and 

Ht =H; - gN - M;Ho• (n.11) 

The operator WN(A, AO) which appears in Eq. (n. 9) is 
defined 

WN (A, AO) = exp(AHn exp[ - (A - Ao)HN] exp(- AoHr> 

(II. 12) 
and may be expanded in the following binary expansion: 

N(II-l> /2 

WN(A, AO) = 1 + :0 j~~ dA1R,,(A, Al)M:(Al, :>to), 
,,=1 a 

(It 13) 
where 

N(N_1l/2 
1\;1: (At> AO) = 1 + 6 1~ ~1 dA2R v(AI> A2)''I1: (A2, AO)' 

v#,,=1 0 
(It 14) 

The binary operator, R,,(AI> A2), which appears in Eqs. 
(n. 13) and (II. 14) is defined 

R,,(Al,A2)=- a~2 W(")(A1 A2) = -W(")(Aj,A2)V,,(A2)' 

(II. 15) 

The definition of W" (AI> A2) is the same as that of 
WN (Aj, A2) except that all N- body operators are replaced 
by operators for the pair of particles Jl. For example, 
if Jl denotes the pair of particles 1 and 2, Jl = (1, 2), 

W(j,2)(A1A2) = exp(AjHri1,2)') exp[ - (AI - A2)H(I,2)] 

(II. 16) 
where 

H~I,2)'= 2~ +~-2g-Jl( 4 j +( 2)Ho (11.17) 

and 
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H(I,2) = H~I,2)' + V(, rt2')' 

The quantity V" (A) is defined 

V,,(A) = exp(:>tHri")') V" exp(- :>tHri")'). 

(II. 18) 

(11.19) 

The binary operator R" (AI> A2) satisfies a very im
portant relation. If we make use of the transitivity of 
W,,(Aj, A2), integrate Eq. (11.15) with respect to A2, 
and note that W" (A, A) = 1, we obtain the following 
identities: 

R" (A3, AI) = - W" (A3, Aj) V" (AI) 

=- W,,(A3, A2)W,,(A2, Aj)V(Aj) 

= W,,(A3, A2)R,,(A2, At) 

= [1 + 1~;3 R" ds R,,(A3, S)]R(A2, At). (II. 20) 

If we now substitute Eqs. (n. 13) and (11.14) into Eq. 
(II. 9), and use the definition of tillN given in Eqs. (11.4) 
and (n.8), we obtain an expansion for the N-body opera
tor exp[- B(HN' + MiN)] in terms of the binary operator 
R,,(AI' AJ) and the single-body operator 

till; (A) = exp (AHril>') Mii exp(- AHril)'), (n.21) 

where 

t:J{i = - 1 dr Jl41 (I r)(r 1 )iH r cos(ko . r) 
and 

Hri°' =kV2m- g- Jl4IHo. 

(11.22) 

(II. 23) 

The temperature integrations in the expansion may be 
reordered so that all integrations range from 0 to the 
temperature immediately to the left. 

We can write a compact expression for all terms in 
the expansion for exp[ - (3(HN' + MiN)] by introducing the 
concept of a ladder diagram (the ladder diagram is a 
generalized version of the X diagrams used by Lee and 
Yang and by Mohling). It is convenient to remove first 
the factors exp(- (3Ht'J that appear in Eq. (II. 9). We 
then obtain the following result: 

exp ({3Ht) exp[ - (3(HN' + Mi") 

= f; (all different Qth order N-particle 
Q=O ladder diagrams). 

(II. 24) 

To construct a Qth order N-particle ladder diagram, 
first draw N vertical lines and label them from left to 
right from 1 to N. At the top, draw a horizontal line 
labeled {3, and below it draw Q horizontal lines labeled 
from Al to AQ from top to bottom. X diagrams are com
pleted by inserting X's in boxes and circles on lines 
according to the following rules: 

(II. i) One and only one cross can occur between any 
two horizontal lines. Crosses must connect neighboring 
horizontal lines. 

(II. ii) Only one Circle can occur on any horizontal 
line. Circles are placed at the crossing of vertical and 
horizontal lines. 

(n. iii) Two crosses cannot have two points in com
mon; i. e., the structure 

is forbidden. 
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(II. iv) The bottom points of a cross may not rest on 
the same horizontal line as a circle. 

(II. v) If Nc is the number of circles, then a Qth order 
N-particle ladder diagram contains Nx == Q - Nc crosses 
(Nx~O, Nc~O). 

An algebraic expression may be associated with a 
Qth order N-particle ladder diagram according to the 
following rules: 

(II. vi) With each cross associate the factor 

t J 

1'\::7t AI. ==RjJ(Ak,Az), 

~,,~ 
where i and j are the particle labels of the vertical 
lines and Ak and Az are the temperature labels of the 
horizontal lines. 

(II. vii) With each circle, associate the factor 

J 

tl AI. = - flHj(Az) ' 

A~ 

where i, j, Ak' and Az have the same meaning as in 
rule (II. vi). 

(II. vii) Order the algebraic expressions for the vari
ous crosses and circles from left to right in the same 
order that the crosses and circles appear when reading 
a diagram from top to bottom. 

(II. ix) Integrate over each temperature from 0 to the 
next higher temperature (the temperature of the 
horizontal line immediately above). 

Some examples of jour-particle ladder diagrams are 
given in Fig. 1. Algebraic expressions for the various 
diagrams in Fig. 1 are: 

Fig. l(a)=I, (II. 25) 

(II. 26) 

Fig. 1 (c) = f08 dAI f/l dA2 f/'2 dA3 foA3 dA4 

X L'lH2(Al)flH2 (A2) MI4(A3) L'lH2 (71.4), (II. 27) 

r 8 r Al A2 j' A3 
Fig. 1 (d) = J 0 dAI J 0 dAdo dA3 0 dA4 

XR I2 ({3, Al)R23 (Aj, A2)R12 (A2, A3)R34 (A3, 71.4), 

(II. 28) 
We notice that among the ladder diagrams defined 

above, there are both connected and unconnected Qth 
order N-particle ladder diagrams. A Qth order con
nected N-particle ladder diagram is one for which all 
N vertical lines remain interconnected by X's when the 
(Q + 1) horizontal lines are removed. In Fig. 1, Fig. 
1 (d) is the only example of a connected ladder diagram. 
By using Eq. (II. 20) all unconnected ladder diagrams 
may be summed to give products of connected ladder 
diagrams (cL Appendix A for an example). The opera
tor exp({3H~) exp[ - {3(HN' + flHN) 1 may then be written in 
terms of cluster operators which are in turn defined in 
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terms of connected ladder diagrams, We thus obtain the 
following result: 

exp({3Hr) exp[ - {3 (HI , + flIP)] = U~ll({3, 0), 

exp({3Hn exp[ - {3(H2' + L'lH2)] == U~ll ({3, O)Uh) ({3, 0) 

+ U11.2)({3, 0), 

exp({3Hn exp[ - (3(H3' + MI3)] 

(II. 29) 

(II. 30) 

= U~ll({3, o)Ub({3, o)Ub Ul, 0) + U~ll({3, 0) U~2. 3) ({3, 0) 

+ U~2)({3, 0)U~I.3)({3, 0) + U~2)({3, 0)U~I.2)(tJ, 0) 

(11.31) 

In Eqs. (II. 29)-(II. 31), ifrjt ..... Jz)({3,O) is an f.-particle 
cluster operator depending on the coordinates of the 
particular particles jj, , .. ,jt. We write the cluster ex
pansion of exp({3, Htl exp[ - {3(HN' + MIN)] schematically 
as 

exp({3Htl exp[ - {3(HN' + L'lH A
) 

6 [1 /~ (f.!ftn!] [if({3,O)],\ 
{Yt} / t:1 

r:.tYQ=N 

=N! (II. 32) 

where Yt is the number of clusters containing f.-particles 
and the summation is performed over all possible com-
binations of f. and Yt which satisfy the condition L: f. Yt 

==N. 

The cluster operators all commute with one another 
and are defined in terms of Qth order connected ladder 
diagrams as follows: 

UR( ) = t (all different Qth order connected 
(3, 0 Q=t-l f. -particle ladder diagrams). 

(II. 33) 

The connected f. -particle ladder diagrams are defined 
and evaluated according to Rules (II. i)- (II. ix). It is 
important to note that if({3, 0) depends on an infinite 
number of ladder diagrams 

(a) (b) 

1 :1 3 4j! 

"1-
n2 

;\3 

. j\~ ~4 

(c) (d) 

FIG. 1. Four-particle ladder diagrams. 
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+ 

FIG. 2. Connected four-par
ticle ladder diagram with un
connected sequence of 
crosses and circles between 
A2 and A6' 

(II. 34) 
From the discussion in Appendix A, it is clear that 

by introducing the cluster operators, we have greatly 
simplified the expression for the grand partition func
tion, because we have been able to sum infinite num
bers of unconnected ladder diagrams into simple prod
ucts of connected ladder diagrams. The connected 
ladder diagrams themselves can be simplified in a 
similar manner. Let us consider, for example, the 
connected four-particle ladder diagram in Fig. 2. The 
region between A2 and A6 corresponds to an unconnected 
internal sequence of crosses. It can be shown that all 
diagrams which have the same topological structure be
tween (3 and A2 and between A6 and A8' but which have 
disjoint chains of crosses between A2 and A6, can be 
summed into a single contracted diagram. The mathe
matical procedure is similar to that involved in going 
from unconnected diagrams to products of cluster 
operators. As a result, we obtain the following defini
tion of the cluster operators in terms of contracted 
connected ladder diagrams: 

[/-((3 0) = "6 (all different connected contracted 
, .e.-particle ladder diagrams). (II. 35) 

Contracted ladder diagrams are constructed in the 
same way as ladder diagrams except that rule (II. i) is 
replaced by 

(II. i') One and only one cross can occur between any 
two horizontal lines. The upper end of each cross must 
either rest on the line A = (3 or must connect to a higher 
cross or circle. 

An example of a connected contracted five-particle 
diagram is given in Fig. 3. The algebraic expression 
corresponding to the diagram in Fig. 3 is 

2011 

Fig. 3 == fo B dA1 f o).1 dA2 j~ "2 dA3 fo).3 dA4 fo).4 dA5 

XR 12 ((3, A1)R45 ((3, A2)ali4(A3)R23(A2A4)R34(A4, A5)' 

(II. 36) 
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III. GRAND POTENTIAL IN TERMS OF CLUSTER 
ZERO DIAGRAMS 

We now !Vant to write an expression for the grand 
potential, r((3,g,Ho,Hr)' Once we do this we can, in 
principle, find all interesting thermodynamic properties 
of the system. We first must explicitly evaluate the 
trace in Eq. (11.2). This will lead to an antisymmetrized 
cluster expansion for the grand partition function which 
we can then resume to obtain an antisymmetrized cluster 
expansion for the grand potentiaL 

Since we are dealing with a system of identical 
fermions we must evaluate the trace with respect to a 
complete set of antisymmetrized states. We shall let 
the kets, I kj, ... ,k N) (s>, denote a complete set of anti
symmetrized momentum and spin eigenstates of Hr 
which can be written 

(III. 1) 

where i:p is the sum over all permutations of the quan
tities k" and E =-1 for Fermi-Dirac statistics (we 
keep the factor E because it allows us to keep track of 
terms which result from exchange effects). Each 
particle in the system is assigned a definite position in 
a ket, the quantity k j which occurs in the jth position 
gives the momentum and spin of the particle; i. e. , 
k, = (kj , ISj). The ket I kl' ... , k N) (S) is not normalized but 
must be multiplied by a factor (N!)1 /2. 

The grand potential is related to the grand partition 
function according to the expression 

(III. 2) 

In terms of antisymmetrized kets, the grand partition 
function can be written 

X ik
1 

•• • kN)(S) 

=t(~) "6 exp(-(3iW;)<k1 ... kNi 
N=O N! k1' "kN '=1 

N' [ N' N I (s) xexp((3Ho ) exp - (3(H + ali ) k1 < •• kN) , 

(III. 3) 
where 

(III. 4) 

In the second term of Eq. (III. 3), one factor (N! t 1 

comes from the normalization of the antisymmetrized 

-~ 

- - - '\3 

- - - i'ls 

FIG. 3. Connected contracted 
five-particle ladder diagram. 
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kets. The other comes from the fact that the summation 
overcounts momentum states and must be corrected by 
a factor (N! )"j. 

The matrix elements appearing in Eq. (Ill. 3) can be 
written in terms of antisymmetrized cluster functions 
as follows: 

(ktl exp([3Hn exp[ - [3(H
j
' + AR

j
)] Ik j) = Ul(:~)' 

(k jk21 exp([3H~') exp[ - [3 (H2' + AR2)] I k jk0 (s) 

= Ut(:~) Uj(:~) + U~s)(:~ ::), 

(kjk2k31 exp([3Hg') exp[ - [3 (H3' + AR3)] I kjk2k~ (s) 

= Uj(:~) Uj(:~)Uj(::) + Uj(:;) UJS)(:~ :;) 

+ Uj(k2)U~s)(kj k3) + Uj(k3)U~s)(kj k2) 
k2 kj k3 k3 k j k2 

+ U(s)(k t k2 k3) 
3 k j k2 k3 ' 

etc., where 

Uj(:~) = Okj' k2 + T j (:;), 

(Ill. 5) 

(Ill. 6) 

(TIl. 7) 

(Ill. 8) 

U~s)(kjk2)=EUj(kj)Uj(k2)+ Tz(kjk2), (TIl. 9) 
k jk2 k2 k j kjkz 

U~S)(:: Z: ::) = Uj(:~)Uj(:Du(::) + U(:D u(::) uG:) 

(III. 10) 

etc., and where 

(
k j • •• k£) £ I £ I ( ) T k' k' =E (k j ••• k£ U ([3,0) kf'" kD s • 
t'" £ 

(TIl. 11) 

Equations (ilL 5)- (Ill. 11) are quite easy to reproduce 
simply by taking antisymmetrized matrix elements of 
Eqs. (II. 29)-(II. 31). The cluster functions U~S)<':F::P 
contain the effects of both statistical and "dynamical" 
clustering. By introducing the functions T£(:t::::~) 
we have explicitly separated out "dynamical" clustering 
effects. When the interaction between particles is 
turned off, T£(!i::::P is identically zero. However, we 
notice that even when the interaction between particles 
is zero, there still may be statistical clustering between 
particles. 

Now that we have introduced an antisymmetrized 
cluster expansion for the grand partition function, we 
may very easily write an expression for r(g, [3,Ho, Hr) 
in terms of antisymmetrized cluster functions. The 
procedure is identical to that used for classical sys
terns. 3 We obtain 
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r(g, (3, /.fo,Hr) 

=_1,£ :0 ...!..exP(_{3tw:)U(s)(k1 "'kN ) 
[3 N=j kj"'kN N! j=j J N k1 '" kN • 

(TIl. 12) 

It is useful at this point to write down a diagrammatic 
expansion for r(g, [3,Ho,Hr ) in terms of the "dynamical" 
cluster functions T£<':l::::~). We therefore introduce 
cluster 0 diagrams (these are also used by Mohling but 
called primary 0 diagrams). 

In terms of cluster 0 diagrams, the grand potential is 
defined 

reg, B,Ho,fir) 

= (-1/{3):0 (all different cluster 0 diagrams). 
(III. 13) 

A cluster 0 diagram is a collection of T£ vertices en
tirely interconnected by directed lines, T£ vertices 
have Q lines entering and Q lines leaving. Cluster 0 
diagrams may contain no broken lines (external lines), 
and two cluster 0 diagrams differ if they have different 
topological structure. 

An algebraic expression may be aSSigned to a cluster 
o diagram according to the following rules: 

(III. i) Label each line from 1 to n, where n is the 
number of lines, and assign to the jth line a spin and 
momentum k j = (kj , 4,), 

(TIl. ii) To each T£ vertex, assign a factor 

(Ill. iii) To each directed line, assign a factor 

t --.;., [ ( I ]n - E exp(- [3wi) 
kj-EVt - 0 Eexp -[3Wj) -1 (P. ')' 

n=j - E exp - ,...Wj 

where k j = (kj,4 j ) is the momentum and spin of the line 
and wj=kV2m-g- J.l4j Ho' 

(TIl. iv) Assign to each diagram an overall factor 
EPB (l/S), where FB is the number of permutations of 
bottom line momenta with respect to top line momenta 
in the product of the matrix elements T£ (:f::::~), and S 
is the symmetry number of the diagram. The sym
metry number is defined to be the number of permuta
tions of labels of lines which leave the diagram topologi
cally unchanged. 

(III. v) Sum over all momenta and spins. 

In order to obtain the distribution function which ap
pears in Rule (III. iii), we have summed over infinite 
series of factors E exp(- (3w j ) which appear when Eq, 
(III. 8) is substituted into Eq. (TIl. 12). 

Some examples of cluster 0 diagrams are given in 
Fig. 4. Using Rules (III. i)- (III. v), we may associate 
the following algebraic expressions with the diagrams 
in Fig. 4: 
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FIG. 4. Cluster O-diagrams. 

(III. 14) 

(III. 15) 

IV. DYNAMICAL CLUSTER FUNCTIONS 

Ultimately, we wish to obtain an expression for the 
grand potential in terms of quantities we can calculate 
given the microscopic properties of the constituent 
particles in the system. Therefore, it is useful to ex
pand the grand potential in terms of two- body operators, 
since the two body problem can usually be solved by 
one means or another. 

We shall begin by first expanding the "dynamical" 
cluster functions T£(!{:::~~) in terms of matrix elements 
of the binary operators, RI" (AtA2) and the magnetic po
tential energy terms tlHj(A). To evaluate T£~r::~), 
we insert Eq. (il. 35) into Eq. (III. 11) and then insert a 
complete set of unsymmetrized states between each 
binary operator and potential energy operator in the 
resulting expansion. {We must insert unsymmetrized 
states because the condition that no two neighboring 
binary operators can depend on the same pair of parti
cles [cf. Eqs. (II. 13)-(II. 14)J destroys the symmetry 
properties of internal states of a cluster. However 
each cluster as a whole remains invariant under inter
change of particles.} In this way we obtain an expansion 
for T£ (:r :~) in terms of unsymmetrized matrix ele
ments of the binary operator and the magnetic potential 
energy operator. The matrix elements of the binary 
operators may be antisymmetrized by adding together 
various terms in the expression for T£(~:::~) (cf. Ref. 
15, p. 1050). As a result, we obtain the following ex
pression for the dynamical cluster functions: 

., 
= 6 (all different connected Q-vertex.[ diagrams). 

Q=t 
(IV. 1) 

A connected Q-vertex .[ diagram is collection of Q R
vertices and AlI vertices ordered from left to right and 
completely connected by internal wavy lines (wavy 
lines must begin and end at vertices and cannot be 
broken). Each'[ diagram has r. external solid lines enter
ing and .[ external solid lines leaving. All lines, both 
wavy and solid, are directed to the left. Each R vertex 

2013 J. Math. Phys., Vol. 17, No. 11, November 1976 

has two lines entering and two lines leaving. Each AlI 
vertex has one line entering and one line leaving. No 
wavy line double bonds may appear (two vertices can
not be joined by more than one wavy line). Two connect
ed Q-vertex .[ diagrams differ if they have different 
topological structure or if they have the same topologi
cal structure but the labeling of external lines differs 
and the temperature labeling of the R matrices differs. 

We may assign an algebraic expression to a connect
ed Q-vertex .[ diagram according to the following rules: 

(IV. i) Label all the lines (solid and wavy) from 1 to 
n, where n is the number of lines (2.[ lines will be 
solid and n - 2r. lines will be wavy), and assign to the 
jth line a spin and momentum k j = (kj , 6 j ). 

(IV. ii) Label the vertices from left to right from 
At to AQ. 

(IV. iii) With each R vertex, associate a factor 

V' ~ '(A, - A,) '(A, - At)R(~t :2)A2 if Aa > A2, 
I "I. a 4 At 

;I ~ 
I 3 ,1 

In the above vertices, the dotted lines may be either 
solid or wavy. The matrix element R(!~:p~~ is defined 

(
k t k2)A2 ( I ( I <s) R k k = k tk2 R A2, At) kak /) • 

a 4 At 

The quantity 8(x) is the Heaviside function and is de
fined 8(x) = 1 for x > 0 and 8(x) = 0 for x < O. The tem
peratures A3 and A2 are the temperatures of the vertices 
to which the outgoing lines attach. 

(IV. iv) With each AlI vertex, associate a factor 

where the dotted lines may be either solid or wavy, 
and the matrix element AlI(kkth is defined 

2 1 

L.E. Reichl 2013 



                                                                                                                                    

FIG. 5. Four-vertex three-diagram. 

till(:l) == (-1)(k1 i LlHikz) exp[Al(wf - wf)]. 
2 ~1 

(IV. v) Multiply by an overall factor El'J3+
N

b.H, where 
N b.H is the number of magnetic potential energy vertices 
in the diagram and P B is the number of permutations of 
bottom line momenta with respect to top line momenta 
in the product of the matrix elements R~1~l)~2 and 
LlH(~P~l' 1 

(IV. vi) Integrate over each temperature from 0 to fj 

and sum over all internal momenta and spins. 

By introducing Heaviside functions into the expres
sions for the binary and potential vertices, we have 
been able to simplify the limits of integration. This will 
prove useful later. We have also summed over certain 
classes of diagrams in dOing this. The factor EPB+Nb.H 

comes from the fact that when complete sets of states 
are inserted between operators in the expression for 
(k j 0 •• k£ I u£ I k j ••• k£> the number of permutations of 
bottom row momenta with respect to top row momenta 
in the matrix elements R(~1~~)~i and LlH(:P'l is l+Nb. H • 

The resulting factor l cancels the factor E£ in Eq. 
(III. 11). In Fig. 5, we give an example of a connected 
four-vertex three diagram. The algebraic expression 
corresponding to the diagram in Fig. 5 is 

Fig. '" J' ~ J' 8 5=E 0 0'" dAj' .. dA4 
k4" 'k7 0 

R(klk2)8 R(k5 k3)Xj H(k4) R(k7 kS)X3 
X k4 k5 Xj ks k3 X2 <l k7 X3 k j k2 X4 

X8({3- Aj)8(;>"1 - A2)8({3- >"2) 

x 8(Aj - >"3)8(>"2 - A3)8(>"3 - >"4). (IV. 2) 

Let us note that if we draw Fig. 5 so that the till vertex 
appears to the left of the middle R vertex, we obtain a 
different diagram. 

V. GRAND POTENTIAL IN TERMS OF BINARY 
o DIAGRAMS 

We shall now combine the results of Secs. IV and V, 
and obtain an expression for the grand potential in 
terms of matrix elements of the two- body operators 
R,,(;>'-j, A2) and magnetic potential energy operators, 
LlH j (>..). We can then use the results of scattering theory 
to investigate the properties of the grand potential. 

To obtain the desired expression for r({3,g,Ho,Hr), 
we must insert Eq. (IV. 1) into Eq. (ill. 13). We then ob
tain the following definition: 

r «(3, .II, H 0,1-/ r) 

= - _{31 is (all different Qth order binary 0 diagrams). 
Q=l 

(V. 1) 
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A Qth order binary 0 diagram is a collection of Q R
vertices and till vertices completely connected by solid 
and wavy lines. R vertices have two lines entering and 
two lines leaving and <lH vertices have one line entering 
and one line leaving. Wavy lines can only be directed 
to the left. Solid lines can be directed to the left and right. 
No wavy line double bonds can be formed. Two binary 0 
diagrams differ if they have different topological struc
ture, or if they have the same topological structure but 
different line types and temperature labeling of R 
vertices. 

An algebraic expression may be associated with a 
Qth order binany 0 diagram according to the following 
rules: 

(V. i) Label all lines from 1 to n, where n is the num
ber of lines, and assign to the jth line a momentum and 
spin 1< j = (kj' d J. 

(V. ii) Label vertices from left to right from Al to AQ. 

(V. iii) With each R vertex associate a factor ac
cording to Rule (IV. iii). 

(V. iv) With each till vertex associate a factor ac
cording to Rule (IV. iv). 

(V. v) Associate with each solid line a factor 

1 k j =EVj = t [E exp(- (3wf)]n= 1 E eXP(-/wJ) ') , T n=j - E exp - Wj 

where kl = (kj ,41 ) is the momentum and spin of the line. 

(V. vi) Multiply the entire expression by a factor 
EPBE

N
b.HS-1 [ci. Rules (III. iv) and (IV. v)]. 

(V. vii) Integrate over the temperatures A1> ••• , AQ 

from 0 to (3, and sum over all momenta and spins. 

Some examples of binary' 0 diagrams are displayed in 
Fig. 6. Algebraic expressions for the diagrams in Fig. 
6 are given below: 

Fig.6(a)=E5 6 JOB ... J8d>"1···dA4 
kj" "kS 0 

x 8({3 - Al)8(AI - A2)8(A2 - A3) 

(V. 2) 

1.. 

(b) ~1 

(c) 

FIG. 6. Four-vertex binary O-diagrams. 
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Fig. 6(b) =E7 '6 J/ ... 18 
dAI ..• dA4 

kl ••. k7 0 

X8({3- Al)8(Al- A2)8({3- A2) 

x 8({3 - A4)(ElJl)(tI'4)(ElJ2)(ElJ5)(ElJS)(ElJ7) 

R(klk2)8 R(k3 k4).1 H(k7) R(k5 kS)8 N.3) 
X k3 k 4 ).1 k5 kS ).2 ~ k1 ).3 k2 k7 ).4' 

and 

( kl k2).1 ( I ( I k >(s) W k k =0 kb41;~,42 WAb A2) k3,43; 4,44 0 
3 4 ).2 (VI. 2) 

and W(Ab A2) is defined in Eq. (n.16). Because we have 
a spherically symmetric interaction, the total z com
ponent of spin is not changed in the collision process 
and therefore cancels out of Eq. (VI. 2). We then obtain 
the following expression for W~~~~)~~: 

Fig. 6(c) =E5 '6 1. 8 ••• 1. 8 d AI ... dA48({3 - Al)8(8 - A2) 
kl.· ·k7 0 0 w~~::X: =exp[Al(:l + :~)J exp[- A2~~ + ~)J 

(v. 4) 

X O(kI41; k242 I exp[ - (AI - A2)Hll k343; k4 44>ri S
). 

(VI. 3) 

If we now insert a complete set of antisymmetrized 
eigenstates of H2, 

VI. MATRIX ELEMENTS OF THE BINARY OPERATOR 

We now wish to find an explicit expression for 
R~~~p~~ in terms of the reaction matrix. If we take 
matrix elements of Eq. (n.15), we obtain 

(VI. 4) 
into Eq. (VI. 3). [In Eq. (VI. 4) we assume that H2 does 
not admit bound states. If it does they can be added (cf. 
Appendix B). Note also that one factor ~ comes from 
normalization of the wavefunctions and another comes 
from the fact that the momentum integrations overcount 
the momentum states. 1 We then obtain 

R(kl k2).1 __ _ 0_ W(kl k2).1 (VI. 1) 
k3 k4 ).2 - OA2 \k3 k4 )./ 

where 

and 

W~~ ::X: = O(KI2 - K 34){ C
2

(k12)O(kI2 ; 4b 42 k34 ; .13, .14 >ri
S

) + 111C
2 
(k12 ) exp(- ~(k~4 - ki2~ (sl(kI2 ; 41,421 A Ik 34 ; .13, .14)0 

XP(k2 1 k2)+mC
2
(k34)exp(- Al(k~4-ki2»)0 (kI2;4b4 2 IA Ik34 ;d 3,d4)riS

) P(k21 k2 ) 
12 - 34 111 34 - 12 

(VI. 5) 

(VI. 6) 

C(k ) (k IAlk > ( 1 7: (k) * ( 2 cos(o£(kdl (k 'IAlk '>1" L > 12 0 34; d 3, .14 12; db d 2 0 = 43,44 r,:,. Y£.m 34 YQ,m k12 ) -; k12 34-'- 12-'- "1"2 . (VI. 7) 

Furthermore we note that the principal part satisfies the relation 

(VI. 8) 

If we use Eq. (B20), and assume that o(O~ I k~> p = 0 (when this is not true we can simply add another term onto the 
equations below), we obtain, after some algebra, 

wl: 1 :2).1 = O(k12 - k34;)JO(k12;4142I k34; 4 3d4>ri s ) + 111C
2 (kI2 ) exp (- ~ (k~4 - ki2») (sJ(kI2 ; 61<i21 A I k34 ; d 3d4>0 P(k2 1 k 2 ) 

\, 3 4 ).2 r rn 12 - 34 

+ mC2(ka4 ) exp(- At (k§4 - ki2)\ 0(kI2 ; <ibd2lA Ika4; 43, 4~6S) rp(k2~k2) + trn 2(k 2 1 k2 ) 6 fdk56 111 ') L \1 34 - 12 12 - 34 45~S 

x C2(kss) exp[~ (ki2 - k~4) JeXp [- ~ (k54 - k;s)] 0(kI2 ;d td2IA Ik56; <i 54s>6 S
) (sci(ks6; <i5, dsl A I k34 ; 4a, 44>0 

X [P(k~s ~ kI2) - P(k~s ~ k5J] • (VI. 9) 

We now can obtain an expression for R~~~P~! by differentiating with respect to A2. We find 
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(VI. 10) 

(VI. 11) 

Combining Eqs. (VI. 10) and (VI. 11), we finally obtain the following expression for matrix elements of the binary 
operator: 

R(:~::X:= -6(KI2 - K34){C2(kI2)O(k 12; 4 j42 1A I k34 ; 4344)~S) exp ( - ~ (k~4 - ki2)) + ~ .• ~ f dkssC
2(k56) 

x exp(:~ (kr2 - k~4)) exp ( - ~ (k~c k~s)) P(k~s ~ kh) O(k12; 4 j421A I k5S; 454S )~S) o(kss; 454SlA I k34; 43, 44 )ci S)}. 

(VI. 12) 

For the purposes of the subsequent discussion, it is convenient to reintroduce center of mass coordinates into Eq. 
(VI. 12). We then obtain 

Rf:j :2)~1 = - [C2(kI2 )O(kb k21A I k 3, k4)~S) exp[ - A2(Wl + W2 - "-'J - W4)]+ ~ 6 c2 (ks6) exp[Aj (Wj + W2 - W5 - ws)] 
\ 3 4 ~2 k5. kS 

XexP[-A2(W3+W4-W5-WS)]P( + 1 )o(klk2IAlk5ks)~S)o(k5ksIAlk3k4)6S)J, 
W5 ws- Wj- W2 

(VI. 13) 

where Wi =kV2m. 

There are some features in the expression for R(~~~~)~~ which are interesting to point out. The first term on the 
right-hand side of Eq. (VI. 13) depends only on one temperature, while the second term depends on two tempera
tures. The first term has the structure of a vertex we would encounter in perturbation theory. Indeed, if we relax 
the restriction on wiggly line double bonds, replace C2(kI2)O(kjk2IA I k2k4)6S) by o(kjk21 V I k 3k 4)ci s ) in the first term on 
the right-hand side of Eq, (VI. 13), and set the second term in Eq. (VI. 13) equal to zero, we obtain the perturba
tion expansion of the grand potential. Because of this Similarity, we expect that some terms in the strong coupling 
expansion of r({3,g,Ho,Hr ) will have the same structure as some terms in the perturbation expansion of 
r({3,g,Ho,H,). In fact, as we shall see, the terms which perturbation theorists use to describe density and spin 
fluctuations in He3, also appear in the strong coupling expansion. 

VII. GRAND POTENTIAL IN TERMS OF THE 
REACTION MATRIX 

We now wish to expand the grand potential in a form 
which shows explicitly the structure of the temperature 
dependence of each term, We therefore must take into 
account, explicitly, the structure of the matrix elements 
R 1kjk2)Aj and t..H(kj) 

1k3k4 ~2 k2 ~j' 

As we have pointed out in Sec. VI, the matrix element 
R(Z~:~)~~ breaks into terms with quite different tempera
ture dependences. We therefore will represent each of 
these terms by separate vertices. In Rules (IV. iii) and 
(IV. iv), we associated Heaviside functions, which re
flected the temperature ordering of various vertices, 
with the vertices themselves. Now, in order to be able 
to treat the solid and wavy lines on an equal basis, we 
shall instead associate the Heaviside functions with the 
lines. Eventually, we will want to add together diagrams 
with the same topological structure but which differ in 
their line types. 

We can obtain an expression for r({3,g,Ho,H,), in 
which temperature dependences of solid and wavy lines 
are treated in an identical manner, if we expand the 
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Heaviside fUnctions in the expressions for the binary 0 
diagrams using the identity 

e ({3 - Aj)f)({3 - A2) = e({3 - At) e(Aj - A2) + e({3 - A2) e(A2 - Aj). 

(VII. 1) 

As a result of doing this, each binary 0 diagram will 
yield one or more diagrams in which the vertices are 
ordered with respect to one another in a well-defined 
way. [Notice that in Fig. 6(b), for example, the vertices 
with temperatures A3 and A4 have no definite order with 
respect to the other two vertices. ] We shall not expand 
the binary 0 diagrams completely, however. We shall 
only expand them until we obtain all diagrams which 
cannot be deformed into one another without changing 
the direction of at least one solid line. 

The t..H vertices will also separate into two parts. 
The t..H vertices are inhomogeneous vertices. That is, 
they do not conserve the momentum of the lines enter
ing and leaving the vertex. This can be made explicit 
if we expand the cosine in Eq. (11.1) in terms of ex
ponentials; cos~' r=Hexp(ik o' r) +exp(- i~' r)]. Then 
the t..H vertices can be written as a sum of two terms; 
one of which increases the momentum of the incoming 
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line by a factor ko, and the other which decreases it 
by a factor ko. 

If we carry out the above changes, we obtain the 
following expression for r(f3,g,Ho,HT ): 

r(f3,g,Ho,Hr ) 

= - ~ t (all different Qth order A- matrix 0 diagrams). 
I-' Q.O (VIT.2) 

A Qth order, A-matrix 0 diagram is a collection of Q 
A-vertices, D vertices, and All vertices ordered from 
left to right and comp.1etely connected by solid and wavy 
lines. A vertices and D vertices (D stands for "double") 
each have two lines entering and two lines leaving. All 
vertices have only one line entering and one line leaving. 
Wavy lines must be directed to the left, while solid 
lines may be directed either to the left or right. D 
vertices with two solid lines must be placed so that 
solid lines are directed to the right. No wavy line 
double bonds may appear except internally in the D 
vertices. Two Qth order A-matrix 0 diagrams differ if 
they have different topological structure; or if they have 
the same topological structure but the lines are of dif
ferent types or directions, or the D vertices have dif
ferent temperature labeling. 

Algebraic expressions can be associated with the Qth 
order A- matrix 0 diagrams according to the following 
rules: 

(VII. ii) Label each line from 1 to n, where n is the 
number of lines, and associate with the jth line a 
momentum and spin kj = (kj , 4 j ). 

(VII. ii) Label the vertices from left to right from Al 
to AQ. (A vertices and All vertices require only one 
label, but D vertices require two labels. One tempera
ture label of a D vertex is determined by its horizontal 
position in the diagram. The other is determined by 
the type of lines that leave it and the temperature of the 
vertices to which they attach [cf. Rule (VII. v)]. 

(VII. iii) With each A vertex associate a factor 

where the dotted lines can be either wavy or solid 
lines. 

(VII. iv) With each All vertex, associate a factor 

I I I 
},--I 11 -l-I 

I I 

A Q == A t + >. E? I -+4 ~4 -1'l. 
I I 

where 

I 

,/-1 
I 

).. ~ =+1dlHr5dhd20(kl- kz-k o) 

-}:l. 
I 

and 

2017 J. Math. Phys., Vol. 17, No. 11, November 1976 

I 

11 
t.. <$ =+~41Hro'I"20(kl-kz+ko), 

~:l. 

where the dotted lines may be either solid or wavy. 

(VII. v) To each D vertex assign temperature labels 
according to the following conventions: 

~ S ,1...'1 ~ s ,~3 ~~ , 

2. ~J" .AI:~~ ~
" 

2. ",. {, )'\"Y' ... ~ 
)..3 ')..:1.") "l ~ "1"> >.,. 

In the above vertices, the right-most temperatures are 
assigned according to Rule (VII. ii). The left-most tem
peratures are assigned according to the nature of the 
outgoing lines and the temperature of the vertices to 
which they attach. For a D vertex with two outgoing 
solid lines, the left-moE/t temperature is 13. For D 
vertices with one outgoing wavy line the temperature of 
the left-most vertex is that of the vertex to which the 
wavy line attaches. For D vertices with two outgoing 
wavy lines which attach to vertices with temperatures 
A2 and A3, the temperature of the left-most vertex can 
be either A2 or A3' In general, both possibilities occur 
and lead to different expressions. 

To each of the above D vertices assign a factor 

The factor i in Eq. (VI. 13) is now contained in the 
symmetry factor S-1 of Rule (VII. ix). 

(VII. vi) With each left directed line, associate a 
factor 

• __ ~: __ • =e(A2- Al)exp[-(A2- Aj)wlJ, 
A~ AI 

and with each right directed line associate a factor 

k, 
• ) • = e(A2 - AI) exp[ (A2 - Al)Wj], 

"'L ,)" 
where wf = ki!2m - g - lUI H o. The dotted lines may be 
either solid or wavy. 

(VII. vii) To each A vertex or D.H vertex with no lines 
leaving or entering on the left, assign a factor e({3- At), 
where Al is the temperature of the vertex. To each A 
vertex, D.H vertex, or D vertex with no lines leaving or 
entering on the right, assign a factor e(At), where Aj is 
the temperature of the vertex. 
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(c) 

(e) 

~ 
~9?3 

(d) 

(t) 

FIG. 7. A-matrix O-diagrams. 

(VII. vii) Associate with each solid line, a distribu
tion function t k, ~ (,v,)~, ",p(- tlwf)/[I-, exp(- tlwDl· 

(VII. ix) Multiply the entire expression by a factor 
EPl%N t>.HS-l, where S is the symmetry number of the 
diagram, Nt>.H is the number of AN vertices in the 
diagram and P B is the number of permutations of top 
line momenta with respect to bottom line momenta in 
the ~2roduct of the matrix elements A(Z!~~), Mf(:V, and 
D~~k4). 

k5kS 

(VII. x) Sum over all momenta and spins. Integrate 
over all temperatures from - 00 to 00, 

To obtain the energies wi in Rule (VII. vi), rather 
than just kinetic energies, we have added back the mag
netic field terms and chemical potential terms which 
cancelled in Sec. VI. It is important to note that wavy 
line double bonds occur internally in the D vertices but 
cannot occur between D vertices and A vertices. In Fig. 
7, we give some examples of A-matrix 0 diagrams. We 
note that the diagrams in Fig. 7 (a) and 7 (b) are not 
identical because of the way the left-most temperature 
of the D vertex is assigned. Furthermore, the diagrams 
in Fig, 7(c) and 7(d) are not identical because one of the 
solid lines is directed differently. Algebraic expres
sions for the diagrams in Figs. 7(e) and 7(f) are given 
below: 

Fig. 7(e) = (E 5/4) :0 r:·· . J ro dAI ... dA4 
kl''' k l1 -"' 

2018 

x (EI'I)(E v2) (EI'9)(EVl1) 8((3 - A2)8((3 - A4)8(AI - A4) 

x 8((3- A1)8(A1- '\3)8(A2 - A3)8(A3- A4)8(A4) 

x exp[ «(3 - A4)witl exp[ - «(3 - Al)(W3 + w4)] 

x exp[ - (AI - A3) (ws + w7) J exp[ (A2 - A3)W2J 

x exp[ - (~ - A4)WS] exp[ - (AI - A4)(wio - wil) 1 
x exp[ (fl - A2)Wj) 
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(VII. 3) 

x (EV4)(EV5)(EVS)(EV7)(EVS)8(AI - A2)8(A2 - A3) 

x 8(A3 - A4)8((3 - A4)8(AI - A5)8«(3 - A5)8«(3 - A2) 

x 8(A5)8(A4)8((3 - At> exp[ - (AI - A2)(W3 + wm 

x exp[ ((3 - A2)WSJ exp[ - (A2 - A3)WsJ 

X exp[ - (A3 - A4)w7J exp[ ((3 - A4)wsJ 

x exp[ - ((3 - A5)(WS + wio) J exp[ - (A5 - Aj)(wf + w:DJ 

We Shall now find it useful to distinguish between three 
different types of A -matrix 0 diagrams: 

Definition (VII. a) Type I A-matrix 0 diagrams con
tain no double bonds or D vertices. 

Definition (VII. b) Type II A matrix 0 diagrams con
tain at least one solid line or mixed line double bond 
but no D vertices. 

Definition (VII. c) Type III A-matrix 0 diagrams con
tain at least one D vertex. 

As we shall see in a subsequent paper, Type I A
matrix 0 diagrams can be added together to obtain 
diagrams analogous to perturbation theory diagrams 
with similar structure. Type II A-matrix 0 diagrams 
are unsymmetric in that for each diagram with a solid 
line or mixed line double bond there is no diagram 
with similar topological structure, but a wavy line dou
ble bond in place of the solid line or mixed line double 
bond. Therefore, Type II A- matrix 0 diagrams cannot 
be added together to yield diagrams with an analog in 
perturbation theory. Type III A-matrix 0 diagrams 
obviously have no analog in perturbation theory. 

VIII. CONCLUSION 

In the previous sections, we obtained an expression 
for the grand potential, r((3,g,Ho,Hr ), of a strongly 
coupled Fermi fluid, in which the two-body interactions 
were described solely in terms of the reaction matrix, 
(klk21 A I k3k4) (8); and the "propagation" of each particle 
between interactions was described in terms of a 
"propagator" of the form 8(A) exp(± AW'). In addition, we 
have included in our expressions the effect of an ex
ternal spatially varying magnetic field in an exact way. 
The expressions we have obtained are well behaved even 
for particles with an infinite hard core, 

As we have seen, the quantum binary expansion con
tains much more structure and much less symmetry 
than the quantum perturbation expansion. One reason is 
the exclusion of wavy line double bonds from the binary 
expansion. The exclusion of wavy line double bonds, 
and the inclusion of mixed line or solid line double 
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bonds can be understood physically. When two particles 
with hard cores undergo a collision, they cannot re
collide unless they first undergo an intermediate colli
sion with a third particle in the medium. The exclusion 
of wavy line double bonds is then a dynamical effect 
which occurs both in the classical and quantum binary 
expansion. However, for a system of identical particles 
with degenerate wavefunctions, there can be an ex
change between one or both of the particles and particles 
in the medium. When this occurs an apparent recolli
sion becomes possible, as seen from the appearance 
of mixed line or solid double bonds. However, it is 
purely a quantum mechanical effect. 

Perhaps the most striking feature about the A
matrix 0 diagrams is that they contain a subclass of 
diagrams which are highly symmetric (the Type I 
diagrams) and which have analogs in perturbation the
ory. As we shall see in a subsequent paper, a subset 
of the Type I diagrams contain all the terms necessary 
to describe spin and density fluctuations in liquid Hes. 
These terms are easily resummed and give a highly co
herent contribution to the thermodynamic properties of 
a strongly coupled Fermi fluid, 

APPENDIX A 

We wish to shOW, by means of an example, how 
Eq. (II. 20) can be used to obtain a product of connected 
ladder diagrams by summing over an infinite number of 
unconnected ladder diagrams. We shall do this by con
sidering the inverse problem, We shall take a given 
product of connected ladder diagrams and show that it 
yields an infinite number of unconnected ladder dia
grams with well-defined topological structure. Consid
er the following product to two-particle connected 
ladder diagrams: 

= J~8 dAl J~Al dA2 J~8 d Al R 12 ({3, At)AHZ(A2)R 34 ({3, AD 

= J0

8 
d At fo At dAZ J~ AdA; Rt2 ({3, Al)AH2(Az)R 34 ({3, AD 

+ foB dAt foAt dAUOAi dAZ R 1Z ({3, At)R 34({3, At)LlHz(AZ) 

+ f/ dA; fo Ai dAt fo At dA2 R34 ({3, ADR12 ({3, Al)AHz (AZ). 

(Al) 
To obtain the last part of Eq. (Al), we have split the 
integration over A; into three parts and have made a 
simple change in the order of integration. Furthermore, 
we have used the fact that R12 and AH2 commute with 

R 34• 

Let us consider one of the integrals in Eq. (Al) and 
use Eq. (11.20). We wish to obtain an expansion for 
(Al) in terms of products of binary operators whose 
temperatures are ordered from right to left from 0 to 
{3. Clearly the pair functions in Eq. (Al) are not in that 
form. If we use Eq. (11.20) the first integral on the rhs 
of Eq. (Al) can be written 

f/' dAt fo Al dA2 J~:\2 dA\ R 1z ({3, At)AHZ (A2)R S4 ({3, AD 

= joB dAt fo Al dA2 fo A2 dAl R12 ({3, Al)!ili2 (A2) 

X[l + fA;dS R S4 ({3, S)]R34 (A2, AD 

= f
0
8 dAl fo Al dA2 fo:\2 dA\ R 12 ({3, At)!iliZ(AZ)R 34(A2, AD 

+ f/ ds fo S dAl gt dAZ J~ AZ dAt R 34 ({3, S )RIZ ({3, At) 

X!iliz (Az)R 34 (AZ, AD 

J' 8 ( Al ( S J' Az + 0 dAUo ds Jo dA2 0 dAl R t2 ({3, Al)R34 ({3, s) 

x LlHZ(Az)R 34 (AZ, AD. 

Let us consider integrals of the following type: 

f/ dAl fo At dAZ R 1Z ({3, Al)R34 ({3, A2) 

(A2) 

( B ( Al ( [ J' 8 ( ( = Jo dAl Jo dA2 R12 (3, At) 1 + At ds R34 {3, s)R34 At, A2) 
(8 (Aj = J o dAl Jo dAZ R 12 ({3, At)R34 (Aj, A2) 

+ foB ds fo S dAd~ Al dAZ R 34 ({3, s)R12 ({3, Al)R34 (Aj, A2) 

= foB dAl fo At dAZ Rdf3, At)R 34 (Aj, A2) 

+ foB dS 1 fo
s1 

dAt f/'l dA2 R34 (f3, sl)R12 (sl, Al)R34 (Al, AZ) 

+ foB dS 2 fo 82 dS l J~ sl dAl foAl dA2 R12 ({3, s2)R34 (sz, sl) 

XR 12 (sl, At)R34 (Aj, A2) + .. '. (A3) 

To obtain the rhs of Eq. (A3), we have repeatedly 

= R-M: + 

- - - 111 

- - - - - - :\t 

-- - -- ".3 

+ fm---: __ 4:, 
-- -- - -1.:>-

- - -- '''3 

1 l. 

1- ••• 

- -- "4 -- -... ~ 
FIG. 8. Decomposition of a product of tWo-particle connected ladder diagrams into an infinite number of unconnected four-par
ticle ladder diagrams. 
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applied Eq. (II. 20). If we now combine Eqs. (Al), (A2) , 
and (A3), we see that the product of three-particle 
connected ladder diagrams in Eq. (Al) can be written 
as an infinite sum of unconnected four-particle ladder 
diagrams. In Fig. 8, we display some of them. Note 
that the circle can only appear on the bottom line or 
with a single (34) cross below it. 

APPENDIX B: TWO-BODY EIGENSTATES 

In this appendix we wish to outline relevant proper
ties of the eigenstates of the two- body Hamiltonian. 
The two-body Hamiltonian may be written in the form: 

H2 = ~ + k~ + V( I r I) = ki2 + kI2 + V( I r I) 
2m 2m 124m m 12' 

(Bt) 

where K12 = kl + k2 is the center of mass momentum and 
k12 = i(k 1- k2) is the relative momentum. The Hamil
tonian separates into a part which describes free cen
ter of mass motion and the relative motion. 

Because we are considering identical fermions, 
eigenstates of both H5 and H2 must be antisymmetric 
under exchange of particles. Eigenstates of H5 may be 
written 

IkI4j;~42)~ s)= Ik j,tl;k2,42)0 +E Ik26 2;kI4j)0, 

and eigenstates of H2 may be written 

Iki4t;~42)~S) 

=C(kd{lkI41;~42)6S)+ ~ ffdksd ks 
"566 

X Ik5'45;k6'46>~S)P( + 1 ) 
WI w2 - Wa- W4 

X o<ksd5 ;ks,dsIA Ikj4 t;kz4 2)O 

(B2) 

(B3) 

(ef. Ref. 16, Sees. 4.3-4. 5). In Eq. (B3) we have 
written standing wave eigenstates of H2. The matrix 
element 0<k5,45;k s ,6 s IA IkI'11;~&2>O is the reaction 
matrix and P denotes principal part. The normalization 
constant, C(kd, only appears for standing wave states. 
When using travelling wave states, defined in terms of 
the T matrix, C(k12 ) does not appear (cf. Ref. 17, Sec. 
7.1. 3). The states Ikj ,41 ;~,42)~S) and Ikt,41;k2,42)~S) 
are not completely normalized, but must be multiplied 
by a factor 2-1!2. 

Since the Hamiltonian splits into a center of mass 
part and a relative part, so will the wavefunctions: 

IkI41;~42)~S) = IKI2) Ik12;41 ,42)~S) (B4) 

where 

Ik12 ; 4142)riS) = Ik12 ; 4 142)0 +E 1- kI2 ;4241 )o; (B5) 

and 

IkI41;~42W)= IKI2)olkI2;4p42>~S), (B6) 

where 

IkI2;41'42)~S)=C(kI2){lkI2;4b42)6S)+m "6 fdk56 
"5 d6 

2020 

x /ks6; &5,46)6S)P(~) 
~ 12 - 56 

x O<ks6; 454 Sl A Ik12 ; 4142 >o}. 
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In Eq. (B7), we have changed from coordinates kt and 
~ to coordinates Kj2 and k 2, and we have used the fact 
that o<KS6 IKI2>O == o(KS6 - kj2 ). (The reaction matrix de
pends only on relative coordinates. ) 

In Eq. (B3), we have ignored the possibility of bound 
states. If the Hamiltonian admits bound states, then we 
must add an extra term onto Eq. (B3) to obtain a com
plete set (cf. Ref. 17, pp. 159 and 205). 

Let us now consider some relevant properties of the 
unsymmetrized eigenstatef of H2. We can then easily 
write down explicit expressions for the antisym
metrized states. 

In the position representation, we may write 

O<r3,63;r4,64/kI61;~42)P 

= O<R34 / K12>0041ho42,61 O<r34 I k(2), 
where 

O<R34 I KI2)O == (2:)3/2 exp(iK34 • Rd 

(B8) 

(B9) 

and 1/2 

< Ik) -(~) ;.. (2f.+l)(')£O(r34f.lk I2f.>Pp( ·k J o r 34 12 P- U 4 1 k £ r 34 12' 
TI hO TI 12r 

(BID) 

The normalization of Eqs. (B9) and (B10) is written for 
particles in an infinite box. The wavefunction 
o( r 34f. I k 12f.> p is defined 

O(r34f.1 ki2~>p 

=cos[ O£(k12 JJ[o<r34f./ k I2 f.)O + (2;1) i ~ dk kO(r34 Q / H>o 

XP(k12 ~ k2) o(kQ IA / kI2Q)O} (Bll) 

The free particle wavefunction, ,)(k 34Q I k 12Q), is defined 
in terms of spherical Bessel functions as 

O(r34e I k I2 Q)O = k12r 34j£ (kI2k 34)' (BI2) 

The free particle wavefunction in the position represen
tation, O(r3,43;r444Ik141 ;k242>O can be written in an 
analogous manner, but in Eq. (B8) O<r34 IkI2 >0 replaces 
O(r34IkI2>P and in Eq. (BI0) O(r34 Q Ik I2 Q>O replaces 
O(r34Q I k12Q) P' The reaction matrix o(kQ I A I k 12Q)O in Eq. 
(Bl1) has been defined so that 

o(k IA I k'>o 

(BI3) 

where the functions YQm(k) are spherical h~rmonics de
pendent on the angles made by the vector k with respect 
to an arbitrary axis (we use the conventions of Ref. 18). 
The factor cosl O£(k12 )] is the contribution to the Hh 
partial wave coming from the constant C(~12)' 

The functions o(rQ I kQ)o and o(rQ I kQ)p satisfy the dif
ferential equations 

(Bl4) 

and 

~ (rQ/kQ) _ Q(Q+l)o(rQlkQ)p+[k2 _mV(/r/J] (rQ/kQ) 
ar20 P r2 0 p 

= 0, (B15) 
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respectively. We may use Eqs. (Bll), (B14), and (B15) 
to obtain the following expression for the reaction 
matrix in terms of the exact two-body wavefunction and 
the potential 

o(kQIAlk'Q)o T ( ')] r"'dro(kQlrQ)ov(r)o(rQlk'Q)po 
k c os <'5 f k Jo 

(B16) 
Diagonal matrix elements of the reaction matrix 

o(kQ IA 1 kQ)o are related to scattering phase shifts <'5f (k). 
If we note that 

o(rQ I kQ)o - sin(kr - h/2), 
kro'" 

(B17) 

o(rQ IkQ)p -cos[<'5f(k)]sin(kr- h/2) 
kr-'" 

+sin[<'5£(k)]cos(kr- h/2), (B18) 

and 

(B19) 

then we may show, using Eq. (B14), (B15), and (B16) 
that 

(B20) 

where <'5r., 0 denotes a Kronecker delta function. 

The position representation is useful for obtaining 
properties of the reaction matrix. However, in our ex
preSSions for the grand potential, we will need expres
sions for the antisymmetrized eigenstates in the 
momentum representation. To obtain these, it is con
venient to introduce the spin exchange operator 
i(1 +(71' (72)' where (71 and (72 denote Pauli spin matrices. 
The effect of the exchange operator acting on states 

141>.12) is 

i(1 +0"1'(72)161>42)= 142,(1), (B21) 

Equation (B21) is easy to verify. Let us expand the 
states 161>62) in terms of eigenstates of the total spin 
8=i«(71 +(72) and the total z component of spin Sz 
= 61 + 42 = i(u ZI + u Z2)' The operator 82 has eigenvalues 
S(S + 1) where S = 1 or 00 The operator Sz has eigen
values 1, 0, or - 1. If we denote the eigenstates of 82 

and Sz by 1 S, Sz), we may write 

I t, t> = 11, 1) , 

li,- i)=(2r1J2[11,0)-100)], 

1- i, i) = (2r1 J2[ 11,0) + 10,0)], 

l-i,-i)=11,-1). 

If we now note that 

(71 '(72 =2S(S+ 1)- 3, 

(B22) 

(B23) 

(B24) 

(B25) 

(B26) 

then using Eqs. (B22)-(B26), we may easily verify Eq. 
(B21). 

We now use the spin exchange operator to write an 
expreSSion for antisymmetric eigenstates of H2: 

O<k3,63;k4,64Ikl'61;k262)~S) 

= o<K 34 'KI2)0 O<ks4;6364I kI2 ;6t,6 2 )!S), (B27) 

where 
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0<k 34 ;43 4IkI2 ;61,62)!S) 

= (S~<ks4;63641 k12 ;61 ,62)P 

= (43, .141 L~ {Y£, m (k34 )yt; m(kI2) + ~ (1 + 0"1 • (72) Yf , m(- k34) 

xy* (+k )}X cos[<'5 (k12 )] [<'5(k -k )+(2k34m) 
£, m 12 k12 k 34 12 34 'IT 

X p(kI2 ~ kiJ <k34Q I A I k 12Q) ] 1""1> (2)' (B28) 

It is possible to find explicit expressions for the re
action matrix for certain types of potential. For 
example, if we consider a finite repulsive core of 
height V and radius a [V(r) = V for r < a and V(r) = 0 
for r > a], then we find 

(k'QIAlkQ) 

_ m VI? (z F£(k'a)F£_l (za) - k' F£-1 (k'a)F£(za» 
- k'(k'2-z 2) (kF£(za)G£_I(ka)-zG£(ka)F£_I(za» , 

(B29) 

where F£ (ka) = kaj£ (ka) a.nd G£ (ka) = kan£ (ka) [j £ (ka) and 
n£ (ka) are spherical Bessel functions, and z2 = k2 - m V. 

Equation (B29) gives a well-defined result even for 
an infinite hard core. Indeed, one finds that 

(B30) 

However, one must be careful in taking the limit V 
- 00. As Lee and Yang and Mohling both pOint out,19 if 
one takes the limit too soon the wavefunction in Eq. 
(B3) appears not to form a complete set. One can see 
the difficulty by looking at the operator 

(B31) 

where Al ~ A2 and H = Ho + V. If we take the limits Al - A2 
and V - 00 in different order, we obtain 

(B32) 

and 

(B33) 

Since the limit V - 00 is unphysical, we shall always 
assume that V is very large but finite and that the 
reaction matrix is well approximated by the first term 
in Eq. (B30). Then we should not have any difficulty 
concerning the completeness of our states. 
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Nonlinear response of equilibrium strongly coupled Fermi 
fluids. II. Fourier expansion and partial resummation of 
expectation values-polarization diagrams 

L. E. Reichl 

Center for Statistical Mechanics and Thermodynamics. The University of Texas. Austin. Texas 78712 
(Received 10 September 1975) 

This is Paper II of a series of three papers in which a self-consistent propagator resummation of self-energy 
effects in a strongly coupled Fermi fluid is performed. In the present paper. a generating function for the 
expectation values of arbitrary one- and two-body operators is introduced and written in the form of a 
cluster expansion. An explicit expression is written for the magnetization of a strongly coupled Fermi fluid 
in the presence of a constant and a spatially varying external field, and rules are given for evaluating it in 
terms of a reaction matrix expansion. A Fourier expansion is performed on a subclass of the diagrams 
contributing to the grand potential and the magnetization, and a self-consistent resummation of self-energy 
effects due to both the medium and the external spatially varying field is performed. It is found that 
traditional perturbation theory techniques for summing self-energy effects cannot be applied to all terms in 
a reaction matrix expansion. The effect of the external fields on the polarization diagrams is discussed. 

I. INTRODUCTION 

In a previous paper, 1 hereafter referred to as RI, we 
derived an exact expression for the grand potential of a 
strongly interacting Fermi fluid, in the presence of a 
magnetic field with a constant and a spatially varying 
part. Contributions to the grand potential due to two
body interactions were expressed entirely in terms of 
the reaction matrix, and temperature dependent single 
particle propagators. 

In the present paper, we shall generalize the results 
of RI to the expressions for expectation values by intro
ducing a generating function for the expectation values 
of single-particle and two-particle operators. We shall 
then focus on the expressions for the magnetization and 
the grand potentiaL 

Normally when considering the response of a system 
to a weak external magnetic field, only linear terms in 
the external field are retained in the microscopic ex
pressions for the magnetization. 2 One assumes that for 
a weak field the nonlinear terms must be much smaller 
than the linear terms and therefore can be neglected. 
However, as we shall see, nonlinear terms can give 
rise to self-energy effects and therefore can be accom
panied by a "secular" (polynomial) dependence on the 
inverse temperature. In the limit of zero temperature, 
these terms need not be small, and some other argu
ment must be found for neglecting them. For the system 
we are considering, there will also be self-energy ef
fects due to the interaction of particles with the medium. 
If the self-energy effects due to interaction with the 
external field are small compared to those due to inter
action with the medium, then the linear approximation 
can be made. 

Part of the purpose of the present series of papers is 
to introduce a method of resumming self-energy effects 
(secular terms in the inverse temperature, (3) without 
at the same time introducing undefined energy denomi
nators in our expressions, as happens when generalized 
Hartree-Fock methods are used (cL the Introduction 
of RI). One can avoid undefined energy denominators by 
performing propagator resummations of the type used 
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in quantum field theory. For equilibrium properties, 
one uses a technique introduced by Matsubara3-

5 to make 
a Fourier expansion of various thermodynamic prop
erties. One can then resum all diagrams containing 
self-energy effects, and all quantities remain well 
defined. 

Because of the appearance of D vertices and the ex
clusion of certain types of double bond structures the 
Matsubara technique does not apply to all terms in the 
reaction matrix expansion for the grand potential (or to 
expectation values in general). However, it does apply 
to the subclass of terms in the reaction matrix expan
sion which contains no double bond structures or D 
vertices. These terms include the polarization diagrams 
which are used to describe spin and density fluctuations 
in liquid He3

• The polarization diagrams have been 
studied by Brinkman and Englesberg6 using perturbation 
theory, and by Reichl and Tuttle7 using reaction matrices 
and generalized Hartree-Fock resummation of self
energy effects. They have never been studied in the pre
sence of an external spatially varying magnetic field 
(Brinkman and Englesberg include a constant external 
magnetic field). We shall therefore use the Matsubara 
technique to study the behavior of the polarization dia
grams in the presence of a spatially varying external 
field. We can then make comparisons between various 
methods of treating the polarization diagrams. In a sub
sequent paper, we shall introduce an alternative propa
gator formulation of thermodynamic properties, which 
can be used even in the presence of double bond struc
tures or D vertices. 

We shall begin in Sec. II by introducing a generating 
function for the expectation values of one- and two-body 
operators, and we shall consider the particular case of 
the magnetization. 

In Sec. III, we use the Similarity between the grand 
potential, r((3, g, fI 0, H r), and the magnetization, (M(r), 
to write an expression for (M(rl) in terms of A-matrix 
OM diagrams. These are analogous to the A-matrix 0 
diagrams introduced in RI, Sec. VII for the grand 
potential. 
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In Sec. N, we restrict our consideration to a sub
class of A-matrix 0 diagrams and OM diagrams (the Type 
I diagrams). These diagrams are the only ones which 
have counterparts in perturbation theory. They can be 
expressed in terms of propagators which are periodic 
functions of (3. The expressions for the grand potential 
and the magnetization obtained using only the Type I 
diagrams [we denote them as r«(3,g,H o,lIT)r and (M(r»r, 
respectively] can then be expanded in a Fourier series 
and the self-energy effects easily identified. 

In Sec. V, we write our expressions for r«(3,g,Ho,Hr lr 
and (M(r»r in terms of a Fourier series and in Sec. VI 
we discuss the form of the self-energy structures ap
pearing in the expressions for r«(3, g,H 0, Hr)r and (M(r»r' 

In Sec. VII, we self consistently resum the self
energy effects in the expressions for r«(3, g,H o,H r)l and 
(M(r»r and in Sec. VIII we apply our results to the case 
of polarization diagrams. Finally, in Sec. IX we make 
some concluding remarks. 

II. GENERATING FUNCTION 

We wish to find a generating function for the expecta
tion value of arbitrary one- and two-body operators 

~ N ~ 

0'( =.0 01 (II. 1) 
1=1 

and 

(11.2) 

The expectation values of these operators are defined 

(01 (21 = exp[(3r«(3, g, H o,H r)) 
~ 

X0 TrNexp[-(3(HN'+AHN)]Of(2), (11.3) 
N=O 

where Qf(2) can denote either Of or ~. The definition of 
all quantities in Eq. (11.3) have been given in RI, Secs. 
II. and III, and will not be repeated here. 

Let us now introduce the follOWing generating function: 

L(®, (3,g,H o,Hr ) 

'" 1 N 
==0 - 0 n exp(- (3w;J 

N=oN! kl "'kN 1=1 

ki oUkN 
x (k1, ••• , kN 1 exp«(3H~') exp[ - [3(HN' + t:.HN)] 1 

Xk;, •.. ,k~)(sJ~ ®}.), 
~=1 'l 

where we use the notation 
N 

n ®}'}= 191 '1 x ®2'2 X ',' X ®N'N' 
j::l1 

(11.4) 

(11.5) 

The quantities 19 JJ' will be defined below. In terms of 
the generating function, (°1) is defined 

(01) = .0 [ai--L (19, [3, g,H 0,11 J® iJ' -6 • 
k2'a a'a J ff 

x exp[[3f' «(3, g, II 0, H r) J 

and (02) is defined 
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(II. 6) 

(02) = 0 B [d®d d: L (19, (3, f{,H o,H r)] 19 -6 
k!Pak{,kb b'b a'a jj' Ji ' 

X exp[[3r([3, f{,11 0'1, r) J. (11.7) 

In Eq. (II. 6) the differentiation is first performed and 
then in the resulting expression d®f.j/d®a'a is defined 

(11.8) 

The remaining factors ®}'j are then set equal to delta 
functions; i.e., ®j.}-Oj.j. Similarly, inEq. (11.7) the 
differentiation is first performed and in the resulting 
expression the quantity (il®j.j/a®a.a)(il®j.dil®b'b) is 
defined 

il®r} a®t'l ( 1- I ) (5) 
'"'' c::;r.:;--= Ok. k Ok}' k' Ok. kb Ok ! ki, kj,k l , O2 k}kl • 
u~a'a u~b'b J' a t a I' " 

(n.9) 

If the cluster functions of RI, Sec. III, are substituted 
into Eq. (n.4), the generating function can be written 
as the exponential of a function B( ®, (3, g, II 0, Ii r) 

(11.10) 

(n. 11) 

The derivation of Eqs. (n.10) and (n. 11) is completely 
analogous to that used in RI to obtain grand potential 
from the grand partition function. 

If we now combine Eqs. (11.6), (n.7), and (11.10), we 
obtain 

(01) = exp«(3r) 0 [~o: eBJ ® -6 
k~a U a'a ii' jj' 

(II. 12) 

and 

+---- e . aB aB) BJ 
a®b'b il®a'. ®j.j-6 j • j 

(II. 13) 

However, 

(n. 14) 

and, therefore, we obtain 

We see from Eqs. (II. 15) and (11.16) that the expectation 
values of one-particle and two-particle operators can be 
written entirely in terms of antisymmetrized cluster 
expansions. 

If we wish to find an expression for the expectation 
value of the magnetization, we simply write 

L.E. Reichl 2024 



                                                                                                                                    

(II. 17) 

where we let 

aa~j'j= 0t. t Ol:j'I:.(k;lr)(rlk,)/.ujo •.• 0 .... ' 
~ a'a J' a • a J a j a 

(11.18) 

where J.L is the magnetic moment and ,is the z compo
nent of spin (cf. RI, Sec. II, for a complete definition 
of the notation). 

III. MAGNETIZATION IN TERMS OF THE 
REACTION MATRIX 

We may now follow the same steps as in RI and obtain 
an expression for the magnetization in terms of the re
action matrix. The result is 

~ 

(M(r)=6 (all different Qth order A-matrix OM 
0=1 

diagrams). (III. 1) 

A Qth order A-matrix OM diagram contains one M ver
tex and a collection of Q A-vertices, D-vertices, and All 
vertices. The vertices are ordered from left to right, 
ending with the M vertex, which always appears at the 
extreme right; and they are entirely interconnected by 
solid and wavy lines. A vertices and D vertices each 
have two lines entering and two lines leaving. All ver
tices and the M vertex only have one line entering and one 
line leaving. Wavy lines must be directed to the left, 
while solid lines may be directd either to the left or right. 
D vertices with two solid lines leaving must appear at 
the extreme left so that the solid lines which leave the 
vertex are directed to the right. No wavy line double 
bonds may appear except internally in the D vertices. 
Two Qth order A-matrix OM diagrams differ if they have 
different topological structure, or if they have the same 
topological structure, but the lines are of different types 
or directions, or the D vertices have different tempera
ture labeling. 

Rules for evaluating the Qth order A-matrix OM dia
grams are given in Appendix A .. 

Some examples of A-matrix OM diagrams are given 
in Fig. 1. Algebraic expressions corresponding to the 
diagrams in Fig. 1 are given below: 

2025 

x 8(A2 - \) 8(~ - \) 8(\) exp((3w{) 

x exp[ - ((3 - ~)( w~ + w~)] exp[ ((3 - i\) w~] 

x exp[(i\ - \)w~l exp[ - (~- \)(w~ + w;) 1 
xexp(- \w~) (ElJ1)(Ev2)(E:v7) (0'3) 
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(III. 2) 

o 

(a) 

o 

(b) 

FIG. 1. A-matrix OM diagrams. 

Xexp[- (~- A2)w~lexp[(A1- \)(w{ + w~)] 

x exp[ - (~ - i\)(w; + w~)] exp(~ w~) exp(- i\w~) 

x exp[ - (A2 - \)(w;o + W{l) A (k1k2) 
k3 k4 

(III. 3) 

We note that just as for the case of the grand potential, 
the expression for the magnetization can also be divided 
into Type I, Type II, and Type III OM diagrams (cf. RI 
Sec. VII). Rules (A. i)-(A.xi) are the same as those 
used to evaluate A- matrix 0 diagrams except that we 
have generalized them to include the possibility of M 
vertices. The rules for evaluating expectation values of 
one- and two-body operators will be essentially the same 
as Rules (A. i) - (A. xi) except that we must generalize 
~hem t~. include vertices corresponding to the operators 
0i and 0ij' 

IV. TYPE I A-MATRIX 0 DIAGRAMS AND OM 
DIAGRAMS 

We shall now look in more detail at the way in which 
the external magnetic field affects the grand potential 
and the magnetization. For Simplicity, we shall only 
study the Type I 0 diagrams and OM diagrams since these 
can be studied using Matsubara techniques. 

We first define the following quantities: 

1 r((3,g,H o,Hr )I=-;36(all different Type I 0 diagrams) 

(IV. 1) 

and 

(M(r)I = 6 (all different Type I OM diagrams). 

(IV. 2) 

We remember that Type I 0 diagrams and OM diagrams 
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contain no double bond structures and no D vertices. 
The Type I diagrams have the property that for each 
Type I diagram with one or more wavy lines, there is 
another Type I diagram with the same topological struc
ture but with a wavy line replaced by a solid line. 

From Rule (A. ix) (see Appendix A) we know that solid 
lines with momentum and spin kj' directed to the left, 
receive a factor Ell j while wavy lines directed to the left 
receive a factor 1. If we add together all diagrams with 
the same topological structure and line directions, but 
different line types, we lose the distinction between 
solid and wavy lines, We can then associate a factor 
(1 + Ell) to all lines of momentum and spin k j directed 
to the left, and a factor ElJ j to all lines of momentum 
and spin k j directed to the right. 

We next can use the simple device, introduced by 
Matsubara, 3-5 to add together all diagrams with the same 
topological structure regardless of the direction of lines, 
We introduce the propagator 

D j("At - ~) = [(1 + Ell) 8(Al - ~) + (Ellj)8(A2 - "At) 1 
xexp[- (Al- ~)w;], (IV,3) 

In terms of the propagator D j(Al - A2), we can write the 
following expression for r(f3,g,H o,Hr) and (M(r)I: 

r(f3,g,Ho,Hr)I=-~6 (all different Type I contracted 

a diagrams) (IV. 4) 

and 

(M(r)I=6 (all different Type I contracted OM 
diagrams). (IV. 5) 

A Type I contractal 0 diagram contains a collection of 
A vertices and t:.H vertices completely connected by di
rected solid lines. A Type I contracted OM diagram con
tains one M vertex and a collection of A vertices and 
t:.H vertices completely connected by directed solid lines 
An A matrix has two lines entering and two lines leaving, 
while t:.H vertices and the M vertex have one line enter
ing and one line leaving. The M vertex must appear on 
the extreme right, but the A vertices and t:.H vertices 
can have any desired order with respect to one another. 
No double bonds of any type can appear in a Type I con
tracted 0 diagram or OM diagram. Two Type I contracted 
a diagrams differ if they have different topological 
structure, 

Algebraic expressions may be associated with the 
Type [ contracted 0 diagrams or OM diagrams according 
to the rules in Appendix B. 

Examples of contracted OM diagrams are given in Fig. 
2, Algebraic expressions corresponding to the diagrams 
in Fig. 2(a) and 2(b) are given below: 

2026 J. Math. Phys., Vol. 17, No. 11, November 1976 

(a) 

(c) 

FIG. 2. Contracted OM diagrams, 

(b) 

M 

o 

(IV. 6) 

Rules (B, i)-(B. ix) (see Appendix B) can be used to 
evaluate both the Type I a diagrams and the Type I OM 
di agrams, 

V. FOURIER EXPANSION OF GRAND POTENTIAL 
AND MAGNETIZATION 

We can now expand the grand potential and the magne
tization in a Fourier series. If we use Eq. (IV. 3), we 
may show thatD j(A) is a periodic functin of A with period 
2f3. We can write it therefore as a Fourier seires 

D.(A)=..! t exp(iz JA) 
J i3nj;_~(izj+Wy 

(Vo 1) 

where Zj=nj1T/i3 (n is an odd integer for fermions). We 
also note that 

g dA exp~(1TVf3)( 2(ni) ] = i3 0( 21ni)' for 'i(ni even. 

(V. 2) 

If we substitute Eq. (V. 1) into the expressions for 
r({3,g,H o,H r )I and (M(r)I obtained by using Rules (B. i)
(B. ix), and integrate over temperature, we obtain the 
rules presented in Appendix C for evaluating the Type I 
contracted 0 diagrams and am diagrams in terms of a 
Fourier transformed expression, 
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Algebraic expressions for the contracted OM diagrams 
in Fig. 2(a) and Fig. 2(b) obtained using Rules (C. 1)
(C. x) (see Appendix C) are given below: 

4 

Fig. 2(a) ==~ ~ g d~ ~ (f:Vs)(l + €Ys) exp[ - ~(w~ - w~) 
f' kl" 'kS "1."3 

X (iZ1 ~ w;) (iZl ~ w;) (iZ3 ~ W;)(iZ3 ~ wJ 
x MI.(:~)A(!:!:)A (::!:)M(::) (V. 3) 

Fig. 2(b)==~s .0 LtJo
B foad~dA5exp[-~(w;+iZ2) 

f' k1' "kS "z 

x exp[As(W~ - iz,,) (1 + EY1)(Evs)(EV4)(EV7) 

xCzz ~ wJ Czz ~ w~)CZz ~ w; )Czz ~ w;) 

(Vo 4) 

VI. SELF-ENERGY STRUCTURES 

When we study equilibrium systems at low tempera
tures we must take care to remove self-energy struc
tures which appear in expressions for the thermodyna
mic properties. The reason is that self-energy struc
tures give rise to terms with polynomial dependence on 
f30 (One can show this by doing the temperature inte
grations for diagrams with self-energy structures.) 
These polynomial terms can destroy the convergence of 
expansions for the thermodynamic properties. 

Self-energy structures are collections of vertices 
which can be removed from a diagram by cutting two 
lines of the same momentum, spin, and energy (k, z). 
An irreducible self-energy structure has no internal 
line with the same energy, momentum, and spin as the 
lines which enter and leave the self-energy structure. 

Irreducible self-energy structures contain both MI 
vertices and A vertices. Some examples are given in 
Fig. 3. We may use the rules of Sec. V to write the 
sum of all possible irreducible self-energy structures 
which can appear on a line of momentum and spin k1 and 
energy z1 as 

M.(zj, kl + ko, "I) + .VI.(Zlk l - ko, "I) + L (kl1 zj, ko," 1) 

= Lt [all different irreducible self-energy structures 
of momentum, spin, and energy, (k1, Z1)]' 

(VI. 1) 

FIG. 3. Irreducible self-energy structureso 
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The first vertex a line touches upon entering an irreduci
ble self-energy structure will be a MI. vertex, a MI_ 
vertex, or an A vertex. The three functions in Eq. (VI. 1) 
distinguish between these three caseso They are defined 
as follows: 

M.(Zh k1 ± ko, "I) 

and 

_ (~llHr)2 

- iZ1 + W'(k1± ko) + M*(zj,k1 ± 2ko, 61) + L(kl +ko,Zj, 61) 

(VI. 2) 

L(kl> Z1, 61) =~ (all different Type I contracted ir
reducible 1 diagrams with at least 
one A vertex and an equal number of 
t:.H. and t:.H_ vertices which cannot 
be cut into two parts by cutting one 
lineL (VI. 3) 

A Type I contracted 1 diagram is the same as a Type 
I contracted 0 diagram except that it contains one ex
ternal line leaving, and it is not possible to cut it into 
two pieces by cutting an internal line with the same 
values (k1, Z1) as the external lines. 

Algebraic expressions are assigned to Type I con
tracted 1 diagrams according to Rules (B. i)-(B. ix) or 
(C. i)-(C. xi) but no factors are assigned to the external 
lines 0 

In addition to self-energy structures, there will be 
lines which contain unequal numbers of t:.H. and t:.H_ 
vertices. We must also resum self-energy structures 
on these lines but we must be careful to do it in such a 
way that we do not over count the original lines. Let us 
consider the case of a line with n t:.H _ vertices and n + 1 
t::.ff. vertices. We can sum over all such lines and obtain 
a single resummed line containing one t:.H. vertex and 
resummed propagators. We shall use the following con
vention. Denote the momentum spin and energy of the 
line entering the collection of MI vertices by (kt. Z1). 

We will choose the extra MI. vertex to be that MI. ver
tex for Which a line (k1 , Z1) enters, but no line (k1, Z1) 

ever appears again after it leaves the t:.H. vertexo An 
example of this choice is given in Fig. 4. Because of 
this convention, the resummed propagators on either 
side of the t:.H. vertex may be different. 

We now can give the following convention for resum
ming a line with m t:.H. vertices and n t:.H. vertices such 
that n - m = l. If we sum over all lines containing m 
t:.H_ vertices and n t:.H. vertices, we obtain a resummed 
line with III t:.H± vertices. The line entering the first 
t:.H. vertex is assigned a propagator 

FIG. 4. Convention resumming self-energy structures on 
lines with unequal numbers of t:.H+ and t:.H_ vertices. 
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+ 

(a) 

(b) 

FIG. 5. Contracted OM dia
grams with self-energy 
structures. 

The line connecting the jth AH. vertex to the (j + 1)st 
AH. vertex or to an A vertex is assigned a propagator 

VII. RESUMMATION OF THE GRAND POTENTIAL 
AND THE MAGNETIZATION 

As we have noted in Sec. VI, at low temperatures 
resummation of self-energy effects is essential for the 
convergence of perturbation or binary expansions of 
thermodynamic quantities. In liquid He3 it leads to the 
Landau quasiparticle interpretation of the liquido How
ever, any attempt to resum the self-energy structures 
in the Type I A-matrix 0 diagrams leads to difficulties 
because of the exclusion of double bond structureso 

We can see this from the diagrams in Fig, 5. Figure 
5(a) has a solid line double bond and therefore is not 
included among the Type I diagrams, Figure 5(b) is a 
Type I diagram. It has no double bond, but if we remove 
the single vertex self-energv structure, we obtain a 
diagram with a double bond. In order to resum sys
tematically propagators in the Type I A-matrix 0 dia
grams or Om diagrams, the double bond structures must 
be included because they form the" skeleton" of many 
of the Type I diagrams which contain self-energy 
structures. 

VIII. POLARIZATION DIAGRAMS 

+ 

+13@'> 8 'i \3 

6 

S 

+ ... 

FIG. 6. Sum of polarization diagrams and their symmetry 
numbers. 

We can resum all self-energy effects in Type I A
matrix 0 diagrams and Om diagrams if in the resummed 
diagrams we allow double bond structures, but explicitly 
subtract a "bare" double bond for each resummed double 
bond that appears. We then obtain the following expres
sions for r({3,g,f/o,Hrh and (,\!J(r)!: 

and 

r({3, g, H o,H r)! =i 6 (all different irreducible 0 
diagrams) (VII. 1) 

(M(r)!= L.; (all different irreducible Om diagrams), 

(VII, 2) 

An irreducible 0 diagram (Om diagram) is the same as 
a contracted 0 diagram (Om diagram) except that double 
bonds are allowed, but self-energy structures are noL 

Algebraic expressions may be associated to the ir
reducible 0 diagrams and Om diagrams according to the 
rules in Appendix D. 

We can now make some general comments about the 
overall dependence of (:H(r) on r. Because the A ver
tices conserve momentum one can show, by explicitly 
summing over all momentum delta functions in a dia
gram, that a diagram containing 111 AH+ vertices and 11 

AH. vertices will have a spatial dependence exp[i(m - n) 
xkg . r 1. Since any values of m and n are possible, the 
magnetization (M(r) will depend on all harmonics of the 
parameter~. If we turn off the field H n we will still 
have a constant magnetization due to the presence of the 
term d j IlH 0 in the energies w;. The grand potential 
r({3,g,Ho,Hr) will only depend on equal numbers of t:Jl+ 
and AB. vertices because of overall momentum conser
vation in the 0 diagrams. 

In the next section, we shall apply the above results 
to the case of the polarization diagrams, 

We can now use the rules of Appendix D to calculate the contribution to the grand potential coming from the polari
zation diagrams. The polarization diagrams describe spin and density fluctuations in the Fermi fluid. Brinkman 
and Engelsberg6 have calculated the effect of spin and density fluctuations on the grand potential and heat capacity 
using perturbation theory and including a constant external magnetic field. Their expressions can only be considered 
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as phenomenological if they are applied to liquid Re3
, because for a system of particles with a large repulsive core 

expansions in powers of the potential are divergent. Our expressions for the polarization diagrams involve only re
action matrices and are well behaved for particles with large repulsive cores. Furthermore we shall include the 
effect of both a constant external magnetic field and a spatially varying external magnetic field. Expressions for the 
polarization diagrams in terms of reaction matrix expansions have been studied by Reichl and Tuttle. 7 In these 
papers, the self-energy effects are summed using generalized Rartree-Fock techniques and as a result energy 
denominators are introduced which are not well defined in the thermodynamic limit where the free particle energy 
spectrum can become continuous. We shall show below that the Matsubara method does not lead to the appearance 
of undefined energy denominators. 

In Fig. 6, we have drawn the polarization diagrams, together with their symmetry numbers, up to fourth order. 
If we use the rules in Appendix D, we obtain the following expression for the infinite sum of polarization diagrams: 

- ~ 1 E
P 

[ (
1, 2,p )] [ ] r({3,g,Ho,Hr)\lOI-~2,,~p:0 :0 ~o"I+"2P'"z+"Zp_IA 2 2"-1 I'l(j A(23) 

P-2 'Y kl • "kZp "I" '"2p ,'Y f' "2+"3."1 +"4 1 4 

x· . ·x (iZ + w'{k ) +~(Z k Ii ») - r (2)(13, g,H Q,H r)POI> 2p 2p 2p, 2p, r 
(VIII. 1) 

where 

S(ZI' kl' H r) '= M+(zl>k1 + ko, 41, H r) + MjZl, kl - ko, 6 t, H r) + I:(Zl, kl,H rL (VIII. 2) 

We have suppressed everywhere the dependence on Ho since it only appears in w'(k). In Eq. (VIlLI), the second 
order contribution r (Z)({3, g,H o,Hr).OI has been subtracted because it is counted twice in the sum. If we now note that 
the A matrices conserve momentum (cf. Sec. VI and Appendix B of RI), we can sum over all even numbered mo
menta k j and even numbered integers nj to obtain 

r({3 H H) =:0~€p 6 6 6:0 6A(k1,41; k2P_l+q'~2P)A(kl+q,62; ka,6 3) 
,g, 0, r.ol P=Z2,p{3P~I'''62Pkl.k3 ••••• t:!P_l q "t."g ••••• "2P-ll k1 +q.4z; kap_l,6ap_l kl ,61; k3+q"q 

x ... xA IkzP-3 + q, 6 2P-Z; k ZP_l, • ZP-l) x ( 1 ) 
\kZp..3,6 ZP-Z; kap_l + q, 6 Zp iz1+ w'41 (kl) + S(Z, k1, 6 bH r) 

1 i 
x (-:-iZ-l-+~i1T-/-:-/7:{3:-+-:--w--;~-z-'(k;-1-+-'--q7)-+"--::::S-r(Z-'1-+"-:-l1T-/"'"{3-"",-:k:-1-+-:--q-, -'-z-, H'T7'"r) X ... x (-:-iZ-2-P_-I-+:---W--;:-2-P_-/""k-2P---l"-) -+-S=""('-Z-ZP-_-1>"'::"k-

2
-
P

_-
1
-'I'-Z-P-_l-,"'TH"""r») 

x(. +. I/{3+ '(k )+S( \ 1/{3lt..! + H»)-r(Z)({3,g,H o,Hr).ol> lZ Zp-l l1T w'ZP 2p-l Z 2p-l 1T , p-l q. 6 Zp, r 
(VIII. 3) 

where q is the momentum transfer and l is an even integer. The sum over l is taken over all even integers. 

In the presE:nt paper, we are most concerned about the way in which self-energy effects from the external field 
and the medium affect the polarization diagrams. As has been discussed in Ref. 7, p. 196, if the reaction matrix 
is peaked fairly sharply about small values of momentum transfer q (and if Hr and ko are not too large), then the 
momenta kh ks, •.. , ~P-l in Eq. (VIII. 3) will be restricted to the vicinity of the Fermi surface. Furthermore, if the 
reaction matrix A (~l:~itl;+k~:!V is a slowly varying function of kl . ks = cose1S , then we can expand the reaction matrix 
in a Legendre series involving the angle e13 • To first approximation, we can keep only the first term in the Legendre 
series and write 

A(kl+q, 62;ks'6~ A( ) 
k 'k+q - k f ,q:6Z"3;41,44, 

1,61>S ,64 (VIII. 4) 

where k f is the Fermi momentum. 

For the purposes of the present discussion we shall make this approximation here. We can then compare our 
results with those of Brinkman and Engelsberg and those of Reichl and Tuttle. We hope to discuss the accuracy of 
this approximation in greater detail in later papers. 

If we use the approximation in Eq. (VIII. 4), we can write Eq. (VIII. 3) in the form 

~ 1 P 

r({3,g,Ho,Hr)pol=62"~ 6 60A (k f ,q :Jl,4 ZP;J2,6ap_t)A(k f q:6Z,63;41,64) 
p=Z 'Y 61."2P q L 

where 
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x(q,/; d 11 4 2,H r) == ~~ (iZ1 + W:1 (kt) + 1(zj, kl' 6 j,H r» (iZ1 +i7Tt!i3 + W:2 (kl + q) + S(~l + 7Til (3, kl + q, 62, H r») (VIII. 6) 

corresponds to a propagator of a particle hole pair with total momentum q, "energy" i7Tl/{3, and total spin 'I + 42' 
Self-energy effects due to the medium and the external fields have been included. 

In order to evaluate Eq. (VIII.6), we must find the poles of the particle propagators appearing there. This, in 
general, will involve some sort of approximation. We shall consider the simplest approximation which illustrates 
the effect of the external fields on the propagators. If spin and density fluctuations in the medium give the dominant 
contribution to the grand potential then they will also give a large contribution to the self-energy ~(Zl' '1;,;; 1,H r)' 

However, for the present purposes we shall neglect contributions to ~(Zb '1;,Sl,H r ) from the polarization diagrams 
and approximate it by the lowest order contribution 

(VIII. 7) 

If we had included in ~ (z j, kl , 'I, H r) an infinite sum of polarization diagrams then it would depend on the energy iz. 
The self-energies M*(zj,kl±ko,d;,Hr) are essentially continued fractions. We shall assume that the fieldH r is not 
too large and that M±(zj,kl±ko,dj,Hr) can be approximated by the following expression 

. _ (~Wi r)2 
M*(zj,kl±ko,h,Hr)-(izl +W:

1
(kI±ko)+A(k1»)' (VIII.S) 

Then the propagators in Eq. (VIII. 6) can be written in the form 

(iz1 + w' (k1) + S(Zl, k1, H r))-l = [iZl + w'(k1) + A(k1) + (~Wi r)2( iZl + W~l (k
l 

+lko) + A(k
1
) + iZl + w\ (k

1

1
_ ko) + A(k

1
») ] _1. 

(VIII. 9) 

To find the poles of the propagator in Eq. {VIII. 9), we must solve a cubic equation. Let us assume that the applied 
field has a very long wavelength. Then kVm «H rJ.l and we can write the propagator in the form 

( . + '( )+ ( H»-l_( (iZl+W~l(kl+ko)+A(kl»(izl+W~l(kl-ko)+A(kl» ) 
lZl W kl SZbkl, T - (iZl+W'{kl)+A(kl)+k~/m)(izl+w'{kl)+A(kl)-iWiJ.12)(izl+W'(k1 )+A(k1)+iWiJ.f2) . 

(VIII. 10) 

We see that if we include the lowest order effects due to the spatially varying external field, and assume that the 
external field has a long wavelength, the poles of the propagator are shifted from their value when H r = 0 by amounts 
which depend independently on the wavelength of the external field and the external field itself. The shift due to the 
external field is imaginary, 

If we use the expression for the propagator given in Eq. (VIII. 10) and use standard techniques for evaluating 
X(qL;dld2,Hr) (d. Ref. 5, Sec. 13) we obtain the following expression: 

( _11) = (,( +) (6+C-6.){6+C-6J(~+6+C-6;)(~+6+C-6J 
Xql;'14Y7r - \ 6 C (C-B)(C+B)(~+6-6'){~+6-6'+C-B)(~+6+C-6/+B 

+ + (6+B-6.)(6+B-6J{6+B+~-6:){6+B+~-6:) 
lJ(6 B) (B- C)(2B)(~ +6- 6 1 +B- C)(~ +6- 6')(U 6- 6' +2B) 

(6- B- 6.)(6- B- 6J{~+ 6- B- 6~)(~ + 6- B- 6J 
+ lJ{6- B) (C _ B)(2B)(~ + 6- 6' _ B- C)(~ + 6- 6' _ 2B){~ + 6- 6') 

, (6' +C- 6.- ~)(6' +C - ~- 6-'(6' +C - 6)(6' +C- 6J 
+ lJ(6 +C- ~) (6' _ 6- ~)(6'- 6- ~ +C _ B)(6 1 

- 6- ~ +C +B)(C- B)(C +B) 

( , ) {6'+B- ~-6.)(6'+B- ~-6J{6'+B-6:)(6'+B-6J 
+ lJ 6 + B - ~ (6 1 _ 6 _ ~ + B _ C)(6' _ 6 _ ~)(6' _ 6 _ ~ + 2B)(B _ C)(2B) 

, (6' - B- ~- 6.)(6' -B- ~- 6J(6' -B- 6.')(6' -B- 6:) \ 
+ lJ(6 - B - ~) {6 1 _ 6- ~ _ B _ C)(6' _ 6- ~ _ 2B)(6' _ 6- ~)(B + C)(2B))' 

where ~ = iTT 1/{3, 

6± = w:
1 
(kl ± ko) + A(k1 ), 

6= w', (k1) + A(k1 ), 

6' = w"2(kj + q) + A'2(kj + q), 

C=l?Vm, 

B=iJ.lHr/V2, 

6~ = w', 2(kj + q± ko) + A'2(kj + q). 
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(VIII. 11) 

(VIII. 12) 

(VIII. 13) 

(VIII. 14) 

(VIII. 15) 

(VIII. 16) 

(VIII. 17) 
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We can now make some comments about the particle hole propagator in Eq. (VIII. 11). First we notice that if 41 =4 2' 

the constant external field Ho everywhere cancels out of the expression for X(q, I j6j62H r) whereas if 61 = - 6 2 it 
contributes. The case 61 = 4 2 corresponds to a particle hole pair with z component of spin equal to zero. The case 
41 = - 62 corresponds to a particle hole pair with z component of spin equal to one. In contrast to this the spatially 
varying external field always contributes regardless of spin. The expression for the propagator involves no undefined 
energy denominators. Self-energy effects merely shift the number and value of the poles in the particle hole propa
gator. The contribution to the propagator due to the amplitude of the external field H r is imaginary. However, the 
overall expression for r ({3, g, H 0, H r)poI will be real since we started with a real expression. 

If Eq. (VIII. 11) is substituted into Eq. (VIII. 5), the contribution to r({3, g, H 0' H r) corning from spin and density 
fluctuations of total spin 1 will separate from those with total spin zero and we can write Eq. (VIII. 5) in the form 
of a logarithm which depends on the propagators as is done in Ref. 6. 

IX. CONCLUSION 

In the present paper, we have introduced a general 
method of writing a cluster expansion for the expectation 
values of arbitrary one- and two-bOdy operators. We 
then restricted our attention to the magnetization and 
grand potential and performed a propagator resumma
tion (of the Matsubara type) on a subset of terms in the 
Fourier expansion of the magnetization and grand poten
tial. We studied the effect of a spatially varying external 
magnetic field on the polarization diagrams. We found 
that a constant magnetic field has no effect on particle 
hole pairs of spin zero and merely shifts the energy of 
the particle hole paris of spin one, while a spatially 
varying field strongly affects both. Application of a spa
tially varying field will probably destroy the coherence 
of spin and density fluctuations. 

For equilibrium quantities the only single particle 
propagator method used for summing self- energy effects 
is due to Matsubara. But as we have seen, the Matsubara 
method cannot be applied to all terms in a reaction mat
rix expansion. We therefore would like to find a method 
which enables us to include systematically D vertex 
contributions to the self- energy, Such a method will be 
discussed in a subsequent paper. 

APPENDIX A 

Algebraic expressions can be associated to the Qth 
order A-matrix OM diagrams according to the following 
rules: 

(A. i) Label each line from 1 to n, where n is the num
ber of lines, and associate with the jth line a momentum 
and spin k j = (kj, 4j). 

(A. ii) Label the vertices from left to right from \ 
to Aa, and assign to the Ai vertex a temperature A= 0 
[cf. RI Rule (VII. ii)]. 

(A. iii) With each A vertex associate a factor 

where the dotted lines can stand for either wavy or solid 
lines. 

(A. iv) With the 6H. and 6H_ vertices associate factors 
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and 
I 
I 
+1 
I 

>.0 
I 

,p. 

where the dotted lines may be either solid or wavy. 

(A. v) With each]l;[ vertex associate a factor 
, 
I 

A 1 
I 

o~ 

where the dotted lines may be either solid or wavy. 

(A. vi) The temperature labels of the D vertices are 
assigned according to the types of lines which leave the 
vertices, as indicated in the following diagrams: 

[cf. RI Rule (VII. v) for a more complete discussion], To 
each of the above D vertices, assign a factor 
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xp , I , I. 

( 
1 ) 

W5 + W6 - WI - W2 

(A. vii) With each left directed line, associate a factor 

and with each right directed line associate a factor 

where wI = kU2m - g - fJ. I H o. The dotted lines may be 
solid or wavy. If the right most vertex is an M vertex 
then At = O. 

(A. viii) To each A vertex or 6.H vertex with no lines 
entering or leaving on the left, assign a factor 13({3 - ''-!), 
where \ is the temperature of the vertex. With each 
A vertex, D vertex, or 6.H vertex with no line entering 
or leaving on the right, associate a factor 13(;\) where 
\ is the temperature of the vertex. 

(A. ix) Associate with each solid line, a distribution 
function 

+~\ = EYl = E exp(-l3w{)/(l- E exp(-l3w1')). 

(A. x) Multiply the entire expression by a factor 
ENI>HEPBS·1 where NI>H is the number of 6.H vertices, 
PB is the number of permutations of bottom line momen
ta with respect to top line momenta in the product of the 
various matrix elements, and S is the symmetry number 
of the diagram. 

(A. xi) Sum over all momenta and spins. Integrate over 
all temperatures from - 00 to 00 • 

APPENDIX B 

Algebraic expressions can be associated to the Type 
I contracted 0 diagrams or Om diagrams according to 
the following rules: 

(B. i) Label each line from 1 to n, where n is the num
ber of lines, and associate with the jth line a momentum 
and spin k j = (kJ> 4 j). 

(B. ii) Label the vertices from At to Ao, where Q is 
the number of t::..H and A vertices and assign to the M 
vertex a temperature A= O. 

(B. iii) With each A vertex associate a factor according 
to Rule (A. iii). 

(B. iv) With each t::..H. and t::..H. vertex associate factors 
according to Rule (A. iv). 

(B. v) With each M vertex associate a factor according 
to Rule (A. v.). 
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(B. vi) With each line of momentum and spin k j = (kj , 61) 

which begins and ends on either a t::..H± vertex or A ver
tex, associate a factor 

1~1' 1 =Dl (AI - A.z), 

"I.. 
where Dl (\ - A.z) is defined in Eq. (N. 3). If \ = ~, 
associate a factor (EV1). 

(B. vii) With each left directed line which attaches to 
the M vertex associate a factor 

1 

• ( ® = exp(- Al w;)(l + EV1) 
A, 0 

and with each right directed line which attaches to the M 
vertex associate a factor 

1-. ) 

"I 
® = exp(\wD(EV1). 

o 

(B. viii) Multiply the entire expression by a factor 
EN I>H EP BS·l where EN I>H is the number of t::..H vertices in 
the diagram, PB is the number of permutations of bot
tom row momenta with respect to top row momenta, 
and S is the symmetry number of the diagram. 

(B. ix) Sum over all momenta and spins and integrate 
over all temperatures from 0 to 13. 

By changing the limits of integration from - 00 to 00 

back to 0 to {3, we have removed the necessity of Rule 
(A. viii). 

APPENDIXC 

Fourier transformed expressions for the Type I, con
tracted 0 diagrams or Om diagrams may be obtained using 
the following rules: 

(C. i) Label each line from 1 to n, where n is the num
ber of lines, and associate with the jth line a momentum 
and spin k j = (kj' 4 j) and an energy Z j = rrn/ {3. 

(C. ii) Associate with each A vertex that is not directly 
connected to the M vertex by a line, a factor 

(C. iii) With each M vertex associate a factor accord
ing to Rule (A. v). 

(C. iv) Associate with each t::..H± vertex, that is not 
directly connected to the M vertex by a line, a factor 

t: .. = -130nl,n2t::..H±G:)· 
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(c. v) With each A vertex which is directly connected 

to the M vertex by one or two lines, associate a tem
perature, A, and a factor 

or 

or 

depending on the particular case considered. 

(c. vi) With each tl.H" vertex which is directly connect
ed to the M vertex by one or two lines, associate a 
factor 

or 

or 

I 

~ = - exp[ + A(W; - W2)]tl.H,,(:1
2
), 

~ 

depending on the particular case considered. 

(C. vii) With each line of momentum and spin kl 
= (k1 , 6 1) and energy .Gl which begins and ends on either 
a tl.H" vertex or an A vertex, associate a factor 

t 1 ~1/(tz, +W;) , 

where .Gl = 1Tnl/[j (nl an odd integer). If a line begins and 
ends on the same vertex, associate with it a factor 
(0.'1)' 

(C. viii) With each line (kll .Gl) that attaches to the M 
vertex, assign a factor (I + 0'1) if it is directed to the 
left and a factor (Elll ) if it is directed to the right. 

(C. ix) Assign to each diagram an overall factor 
e

il
l>.HePBS-1 [cf. Rule (A. x)]. 
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(Co x) Integrate over the temperatures of the vertices 
that connect to the M vertex from 0 to {3. 

(Co xi) Sum over all momenta and spin and sum over 
all odd integers nj from - 00 to "". Multiply by a factor 
1/{3 for each line in the diagram that does not connect 
to an M vertex. 

APPENDIX D 

We may associate algebraic expressions with the 
irreducible-O diagrams and Om diagrams according to 
the following rules: 

(D. 1) Label each line from 1 to n, where n is the num
ber of lines, and assign to the jth line a momentum, 
spin, and energy (kJ> Zj). 

(D. ii) With each M vertex associate a factor accord
ing to Rule (A. v). 

(D. iii) Associate with each A vertex a factor according 
to Rule (C. ii) or (C. v). 

(D. iv) Associate with each tl.H" vertex a factor accord
ing to Rules (C. iv) or (c. vi). 

(D. v) Associate with each line with labels (k1 , ZI) con
taining no All" vertices a factor 

(D. vi) If a line contains a sequence of 1 tl.H+ vertices 
or l tl.H _ vertices, then with the line entering the first 
tl.ll" vertex associate the propagator in Rule (Do v). With 
the line connecting the jth tl.H. vertex to the (j + list 
tl.H" vertex or with an A vertex, associate a factor 

(D. vii) For each double bond structure, subtract a 
factor 

1.. <:> = (iZl ~W;)(iZ)wJ, 
(D. viii) Assign factors according to Rules (C. viii)

{C. x!), 
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Propagator techniques for equilibrium strongly coupled 
Fermi fluids 

L. E. Reichl 

Center for Statistical Mechanics and Thermodynamics. The University of Texas. Austin. Texas 78712 
(Received 10 September 1975) 

This is Paper III of a series of three papers in which a self-consistent propagator resummation of self
energy effects in a strongly coupled Fermi fluid is performed. In the present paper. a Laplace 
transformation of the reaction matrix expansion of the grand potential and the magnetization is obtained. 
and a self-consistent propagator resummation of self-energy effects due both to the medium and to constant 
and spatially varying external magnetic fields is performed. The procedure for resumming polarization 
diagrams is discussed. 

I. INTRODUCTION 

In two previous papers, hereafter referred to as ru1 

and RII, 2 we obtained exact expressions for the grand 
potential and for the magnetization of a strongly coupled 
Fermi fluid in the presence of a constant and a spatially 
varying external magnetic field. In RI, we wrote the 
expressions for the grand potential in terms of tempera
ture dependent Single particle propagators and reaction 
matrices. In RII, we found expressions for the expecta
tion values of one- and two-body operators in terms of 
cluster expansions and we wrote an expression for the 
magnetization in terms of temperature dependent single 
particle propagators and reaction matrices. However, 
we found that the usual perturbation theory techniques 
used to sum self-energy effects in the single particle 
propagators could only be applied to a small subclass of 
terms in the expressions for the grand potential and the 
magnetization. 

In this paper, we wish to discuss an alternative 
single particle propagator method for self consistently 
resumming all self-energy effects in the reaction matrix 
expansion of equilibrium quantities. We begin in Sec. II 
by writing the Laplace transform of the single particle 
propagators and then the Laplace transform of the 
grand potential and the magnetization. In Sec. III, we 
define and discuss the self -energy structures that ap
pear in the A-matrix ° diagrams and OM diagrams and 
we explicitly resum them. In Sec. N we show how the 
collective effects due to spin and density fluctuations 
appear in our expressions for the grand potential and 
we explicitly resum their contribution to the grand po
tential. In Sec. V, we make some concluding remarks. 

II. LAPLACE TRANSFORM OF THE GRAND 
POTENTIAL AND THE MAGNETIZATION 

In RI, Sec. VIII, we obtained an expression for the 
grand potential, r([3,g,Ha,Hr ), in terms of A-matrix ° 
diagrams and in RII, Sec. III, we obtained an expres
sion for the magnetization (M(r) in terms of A-matrix 
OM diagrams. Both the A-matrix ° diagrams and OM 
diagrams were defined entirely in terms of reaction 
matrices and temperature dependent single particle 
propapators. We now wish to write an expression for 
the Laplace transform of the grand potential and the 
magnetization. 

We shall first Laplace transform the single particle 
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propagators. We may write 8(A)exp(± AW) in the form 

1 i -r+i~ 1 
8(A)exp(± AW)=~ ds exp(-sA)--

Til .r.i~ S±W 

=-2
1

. £ dsexp(-sA)_1_. 
Til Jc S ± W 

(II. 1) 

In Eq. (11.1), y is a positive number such that y> I wi. 
The Bromwich contour in Eq. (II. 1) encloses both poles 
of 1/(s±w) (cf. Fig. 1). We can always choose y large 
enough so that the condition y> I w I is fulfilled 
(cf. Ref. 3, Sec. 14). 

If we substitute Eq. (n.1) into the expressions for 
the A-matrix ° diagrams and OM diagrams, we find that 
each line is described by a different" energy" s I' How
ever, the values of s i for various lines are related by 
the way the particles interact with one another. If we 
perform the temperature integrations in the various ° diagrams and OM diagrams and make use of the 
relation 

I,..s 

ReS 

c 

FIG. 1. Bromwich contour for the propagators. 
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(II. 2) 
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we obtain conservation relations between the energies 
of various lines in a given diagram which are governed 
by the topology of the diagram. [Note that if we choose 
Sl to be pure imaginary, Eq. (II. 2) reduces to the usual 
definition of a Dirac delta function. ] 

The temperature integrations in the expressions for 
r( [j,g,Ho,Hy) and (m(r) exhibit a sort of "causality" 
in that they are ordered in a well defined way from 
small values of A to larger values of A. When we sub
stitute Eq. (11.1) into the expressions for r({3,g,Ho,Hr ) 

and (m(r», we must find a way to keep track of the 
ordering or "causality" of the temperature integrations. 
This can be done if we redefine the propagator in 
Eq. (II.l) as 

1 f . 1 8(A)exp(±Aw)==lim-
2

·" dsexp(-sA) O. 
6~ ° Trt c S ± w -

(II. 3) 

We then stipulate that only those poles contribute which 
depend on + 0 (L.e. , poles of the form s ==± W + 0). With 
this convention, we can unambiguously reproduce the 
expressions for the grand potential and magnetization 
which are obtained by performing the temperature 
integrations directly. 

We can now write the rules for obtaining the Laplace 
transformed expressions for the grand potential, 
r(g,{3,Ho,Hr ), and the magnetization (m(r». 

r( (3,g ,Ho,Hr) 

= -~ t (all different Qth order A-matrix ° diagrams) 
Qd (II. 4) 

and 

(m(r) 

=t (all different Qth order A-matrix OM diagrams). 
Q=1 

(II. 5) 

An A-matrix 0 diagram contains a collection of Q /).H± 

vertices, A vertices and D vertices. An A-matrix OM 
diagram contains one M vertex and a collection of Q 
~± vertices, A vertices, and D vertices. The vertices 
are ordered from left to right, and are entirely inter
connected by solid and wavy lines. If a diagram contains 
an M vertex (a OM diagram) then it appears at the ex
treme right. A vertices and D vertices each have two 
lines entering and two lines leaving. The M vertex and 
/).H± vertices only have one line entering and one line 
leaving. Wavy lines must be directed to the left, while 
solid lines may be directed either to the left or right. 
D vertices with two solid lines leaving must be placed 
so that the solid lines which leave the vertex are 
directed to the right. No wavy line double bonds may 
appear except internally in the D vertices. Two Qth 
order A matrix 0 diagrams or OM diagrams differ if 
they have different topological structure; or if they have 
the same topological structure, but the lines are of dif
ferent types or directions, or the D vertices have dif
ferent temperature labeling. 

Algebraic expressions for the A matrix 0 diagrams 
and the A matrix OM diagrams may be obtained accord
ing to the rules in Appendix A. 
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Two examples of A matrix OM diagrams are given in 
Fig. 2. Algebraic expressions corresponding to the 
diagrams in Fig. 2 are given below: 

Fig. 2(a) 

-E
3 

'" (~) 4f '" fdS ds •• 'ds - u 27Ti L 1 5 
k 1• .. k7 

Fig. 2(b) 

= E3 6 (~) 5 f ... f ds • 0 • ds 
2Trt 1 7 

k1· .. kg 

(n.7) 

(a) 
FIG. 2. A-matrix OM 
diagrams. 

(b) 
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III. REMOVAL OF SELF-ENERGY STRUCTURES 

We can now discuss the self-energy structures that appear in the expressions for the grand potential r«(3g1{ ,fly) 
and the magnetization (m(r). The discussion is somewhat similar to that of RII except that now our diagrams 
are ordered from left to right and we need not exclude any diagrams from our expressions for r({3,g,H,fIy) and 
(m(r). 

Since the diagrams have left-right ordering we must be careful in the way we define the self-energy structures. 
Self-energy structures are now defined to be those parts of an A-matrix 0 diagram or an A-matrix OM diagram 
which can be removed by cutting two identically directed lines with the same momentum, energy, and spin (k U s1 ). 

They have no momentum indices in common with the diagram to which they attach except for the momentum of the 
attaching lines. An irreducible self-energy structure cannot be cut in half by cutting an internal line with the same 
momentum, energy, and spin as the lines which enter and leave the self-energy structure. Self-energy structures 
appear because of conservation of momentum and energy at each vertex or group of vertices. 

Self-energy structures composed of t:.H" vertices were discussed in some detail in RIl, and therefore we will not 
discuss them again here. In Figs. 3(a) and 3(b) we give some examples of self-energy structures which contain A 
vertices and D vertices. In Fig. 3(c) we have an example of an object which is not a self-energy structure, because 
the lines which enter and leave it do not have the same energy [cf. Rules (A. ix) and (A. x) in Appendix A]. The 
dotted lines in Fig. 3 may be either solid or wavy. 

Before we resum the self-energy structures in the A-mat.rix ° diagrams and OM diagrams we shall make one 
further simplification. We shall add together all diagrams for which one can replace wavy lines by solid lines and 
not change anything but the dependence of the diagram on the factor (EIJ 1). We then obtain diagrams which contain 
left-directed wavy and dotted lines, and right-directed solid lines. The dotted lines are represented by a factor 
(1 + Ell t ) and are the sum of left-directed wavy and solid lines. We then can draw the dotted lines as left-directed 
solid lines since this presents no ambiguities. 

We now can resum the self-energy structures that appear in the A-matrix ° diagrams and A-matrix OM 
diagrams. We then obtain the following expressions for r((3,g,Ha ,Hy ) and (m(r): 

r(~ ,g ,Ho,Hr) = - ~ 6 (all different irreducible A-matrix ° diagrams) 

and 

(Ill. 1) 

(m(r)=6(all different irreducible A-matrix OM diagrams). (Ill. 2) 

An irreducible A-matrix ° diagram (or OM diagram) is the same as an A-matrix ° diagram (or OM diagram) 
except for the following changes: (1) no self-energy structures may appear; (2) all left-directed lines are solid, 
except internal lines of a D vertex or lines beginning and ending on vertices with the same temperature label; (3) 
solid line double bonds are allowed; and (4) a given line can only contain t:.H. vertices or t:.H. vertices but not a 
combination of them. 

An algebraic expression may be associated with the irreducible A-matrix ° diagrams and OM diagrams according 
to Rules (A. i)-(Axii) except that Rule (A. vii) is replaced to read: 

(III. vii) (a) With each left-directed solid line (k U s1 ) which connects an M vertex, A vertex or D vertex on the 
right to an A vertex, D vertex, or t:.H" vertex on the left, associate a factor 

2036 

(1+EIJ1 ) 

(b) With each right-directed solid line (kus t ) which connects an A vertex or D vertex on the left to 
an M vertex, A vertex, D vertex, or t:.H" vertex on the right, associate a factor 

(Ell t ) 

(c) With each left-directed solid line which attaches one t:.H" vertex to another t:.H" vertex or to an A 
vertex or D vertex, associate a factor 

(1+EIJ1) 

(d) With each right-directed solid line which attaches one t:.H* vertex to another t:.H* vertex or to an 
A vertex, D vertex, or M vertex, associate a factor 

(E1l 1 ) 

(e) To each internal wavy line (k U s1 ) of a D vertex assign a factor 1/(s - w~ - 5). 
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(f) For each solid line double bond subtract a factor 
I <> ::= (SI - W~ - ;)(S2 - W~ - 6) . 

(g) For each line attaching to vertices with same label, assign a factor (EIJ I ) if it is solid and no factor if it is 
wavy. 

The quantities M~(R )(s u k1 + ko,. 1 ,Hr ), M~ (R )(S1' kt - ko, ~ I,Hr ), and L. L(R )(su kl ,Hr ) appearing in Rule (III. vii) 
are defined as follows: 

and 

L.L (R )(su k l )::= 6 (all different irreducible A-matrix 1 diagrams with left (right) directed external lines of 
momentum spin and energy (S1Okl) which contain at least one A vertex or D vertex and 
an equal number of AH. and AH_ vertices.) 

(III. 3) 

( (III. 4) 

(III. 5) 

An irreducible A-matrix 1 diagram is the same as an irreducible A-matrix 0 diagram except that it has one 
external incoming line and one external outgoing line. The external lines are identically directed. Algebraic 
expressions may be associated to the irreducible A-matrix 1 diagrams in the same way as for A-matrix 0 diagrams 
except that no factors are assigned, to external lines. 

Some examples of irreducible A-matrix OM diagrams are given in Fig. 4. Algebraic expressions for the diagrams 
in Fig. 4 are given below: 

~£~~<-
(a) 

(b) 

(c) 

FIG. 3. Structures appearing in the A-matrix 0", diagrams; 
(a) left directed self-energy structures, (b) right directed 
self-energy structures, (c) not a self-energy structure. 

2037 J, Math. Phys., Vol. 17, No. 11, November 1976 

~
'1 

S M 
:l 

"'2-
(a) 

o 

(c) 

"-. 
(b) 

FIG. 4. Irreducible A-matrix OM diagrams. 
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(III. 6) 

(III. 7) 

x(A (l+Evj ) )_( 1 ) ( 1 )} 
j=4(Sj-wj -(1+Ev)SL(k j ,sj)-6) s4-w~-6 s5-w~-6 . 

(III. 8) 

In Eqs. (III. 6)-(III. 8), the self-energy 5L (R)(k"s,) is defined 

5 L(R)(k"s,)= 6 L (R)(kl>s"Hr ) + M~(R)(sl' k, - ko, 'l>Hr ) + lvl~(R)(sl' k j + k O,4VHr)' (III. 9) 

IV. POLARIZATION DIAGRAMS 

In RIl, Sec. VIII, we studied the contribution to the 
grand potential due to polarization diagrams composed 
entirely of A vertices (with D.H± vertex self -energy 
structures included). We found that, using the Matsubara 
technique, we could not include contributions to the 
polarization diagrams coming from D vertices. Such 
contributions are important if we want to sum D vertices 
into the vertices of the polarization diagrams or if we 
want to include D vertex effects in the self -energy 
structures. The inclusion of such effects would probably 
be necessary for realistic calculations of the thermo
dynamic properties of liquid He'. 

We would like to show how one can sum the polariza
tion diagrams in the Laplace transform expansion of the 
grand potential. For simplicity we shall turn off the 
external fields (setHo=Hr=Ol since we are primarily 
interested in the structure of the polarization diagrams 
themselves. Furthermore we shall suppress the spin 
dependence in the diagrams. Inclusion of the spin de
pendence simply causes the polarization diagrams to 
split into a part due to density fluctuations and a part 
due to spin fluctuations, but does not change the basic 
structure of the diagrams. 

Some of the lower order polarization diagrams which 
contribute to the grand potential are displayed in Fig. 5. 
We first note that all horizontal chains of "bubbles" can 
be summed, if we assume that the A vertices depend 
only on the momentum transfer, q (cL RII, Sec. VlII), 

A (k, ;~:$~q}A(q) 
We then can define 
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X(q,E)= 0 + c:x:> +, (IV.l) 

<XX:> + ... , 

where 

( 
Xo(q, E) 

X q, E) = 1 _ EA(q) Xo(q, E) 

and 

X.o(Q,E) 

(2:;) 

(IV.2) 

X(E::' sl + w(kl + q) + (E~:~:) 6 R(kt + q, E - sl) - 6) , 
(IV. 3) 

where E=SI +S2' The poles of the propagator X(q,E) 
contain collective mode effects due to the spin and den
sity fluctuations (cf. Ref. 4 for a discussion of the 
structure of Eq. (IV. 2) for the case of an electron gas). 
We could generalize Eq. (IV. 3) even further by 
summing D vertices and higher order terms involving 
D vertices and A vertices into the vertices in Eq. 
(IV.l). 

If we perform the sum over all horizontal chains of 
"bubbles" then the sum over polarization diagrams re
duces to a sum over step diagrams as indicated in 
Fig. 6, where each line with label j in a step diagram 
corresponds to a propagator X(q, E j ) and each vertex 
corresponds to a factor A(q). 

We can now write the expression for the grand poten
tial in the form of an infinite sum which can be 
evaluated systematically: 
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+ + 

+ + ••• 

FIG. 5. Some polarization diagrams which contribute to the 
grand potential. 

FlG. 6. After summation over chains of horizontal bubbles. 
the polarization diagrams reduce to step diagrams. 

'" 1 ( 1) 2n 2n 
n13 g} =~ - -. f ··-fdE1 "'dE2 ~exp(-13~ E j (eA(q»2n 

, PDI no1 2n 27Tl n q I=' 

V. CONCLUDING REMARKS 

In the present series of papers (cL Refs. 1 and 2), 
we have written the grand potential and the magnetiza
tion of a strongly coupled Fermi fluid in terms of a 
reaction matrix expansion with self-energy effects due 
to the medium and to external fields included in the 
Single particle propagators, The expressions we have 
obtained are exact. They are well behaved, even for 
particles with hard cores, and they never contain un
defined energy denominators. Furthermore, the expres
sions we have obtained are in a form which can yield a 
quasiparticle picture of a Fermi fluid. The quasiparti
cle energies are simply given by the poles of single 
particle propagators. We can now begin to test many 
of the assumptions of the phenomenological theories 
of liquid He3 by calculating phenomenological parameters 
directly for realistic He' potentials. 

APPENDIX A 

The A-matrix ° diagrams and OM diagrams may be 
evaluated according to the following rules: 

(A. i) Label the A vertices and D vertices from left 
to right from '\ to Ao, where Q is the number of 
vertices. (A vertices require one label but D vertices 
require two labels. One label of a D vertex is assigned 
according to this rule. The other is determined by the 
type of lines that leave the D vertex, and the labels of 
the vertices to which they attach. [cf. Rule (A. vi)]. 

(A. ii) Label the lines from 1 to n, where n is the 
number of lines, and associate with the jth line a mo
mentum and spin kj=(kJ,.j) and an energy Sj. (There 
is one exception. If a line connects two vertices with 
the same label, A, or connects a vertex to itself, it 
need not be assigned an energy Sj' ) 

2039 J Math. Phys., Vol. 17, No. 11, November 1976 

(A. iii) With each A vertex associate a factor 

where the dotted lines can stand for either wavy or solid 
lines. 

(A. iv) With each 6.H* vertex, associate a factor 
I 

A. 1 

A 4- =E!!:..4 10 flro(~-k..!'Fko) 'T' 2 4 1 ,4 2 .... Z 
I 

where the dotted lines may be either solid or wavy. 

(A. v) With each M vertex associate a factor 

I 
I 

... 1 
I 

o~ 
.b. 
I 

(A. vi) To each D vertex assign labels, \, according 
to the following conventions: 

~
/ 

I ,,1:: S 

l. ~~" A, 'r,~ 

lI .. 

<\~~; I S' I 

Z. ~,~I ~F',~ 

>-3 A .. ? 1<, 

'\2.~C:·3 \ / 

1. />. .. " ~I'"t::~ 
~J ~3) ;.. ... 

l.E. Reichl 2039 



                                                                                                                                    

In the above vertices, the right-most labels are 
assigned according to Rule (II. ii). The left-most labels 
are assigned according to the nature of the outgoing 
lines and the labels of the vertices to which they attach. 
For a D vertex with two outgoing solid lines, the left
most label is f3. For D vertices with one outgoing wavy 
line the label of the left-most vertex is that of the 
vertex to which the wavy line attaches. For D vertices 
with two outgoing wavy lines which attach to vertices 
with temperatures ~ and A3 , the temperature of the 
left-most vertex can be either ~ or ~. In general, 
both possibilities occur and lead to different 
expressions. 

To each of the above D vertices assign a factor 

D ksk6 = -C2(k;;s)o(k tk2[A [k5ks>~S) o(k5ks [A [k3k4>~S) (
lk2) 

k3k 4 

XP ((w~ + w~ -~i - wJ ' 
where wf=ki/2m-g-/.ld lHo' 

(A. vii) To each left directed wavy line (k 1O s 1 ) assign 
a factor (Sl - w~ - 0)-1. To each left directed solid line 
(kUs1 ) assign a factor (EVl)(Sl-W~ _0)-1. To each right 
directed solid line (k 1O s 1 ) assign a factor (EV1) 
x (St + wl- o)"t. If a line (k t , s1) connects two vertices 
with the same label, assign no factor if it is a wavy 
line, and a factor (EV1) if it is a solid line. 

(A. viii) To each line (k 1s 1 ) which attaches to a vertex 
with label A={3, assign a factor exp(-!3s1)' 

(A. ix) To each A vertex or t:.H± vertex with no lines 
entering or leaving to the left, assign a factor (1/21Ti), 
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x f d5 L exp( - {35L )(5 L - 40) to the diagram unless the 
vertex has temperature label {3. To each A vertex, D 
vertex, or t:.H± vertex with no lines entering or leaving 
to the right assign a factor (1/21Ti) f d5R (SR - 40) to the 
diagram. 

(A. x) In a given diagram, there will be either one or 
two vertices with a given label, A [cf. Rule (II. vi)]. If 
only one vertex has label A, then assign a delta function 
(21Ti)0(5±51 ±52 ±53 ±54 ) to the diagram, where 5 10 , .• ,54 

are the energies of the lines that enter and leave the 
vertex. If two vertices have the label, A, then assign 
a delta function (21Ti)0(5 ± 51 ± S2± 0 0 '± 58) to the diagram, 
where s 1, ••• ,58 are the energies of the eight lines 
entering and leaving the two vertices. The energy, 5, 

appears if the vertex satisfies the conditions of Rule 
(II. ix). It has values 5 = + 5 L or 5 = - 5 R depending on 
the type of vertex. The plus and minus signs in the 
delta functions are assigned as follows: An incoming 
line directed left is minus; an incoming line directed 
right is plus; an outgoing line directed left is plus; an 
outgoing line directed right is minus. 

(A. xi) Multiply the entire expression by a factor 
EP BS-

1
, where PB is the number of permutations in the 

various matrix elements, and S is the symmetry num
ber of the diagram. 

(A. xii) Sum over all momenta and spins. Multiply by 
(1/21Ti) f ds j for each line of energy S j and integrate. At 
the end of the calculation, take the limit 0 - O. 
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A calculation of SU( 4) Clebsch-Gordan coefficients * 
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All the Clebsch-Gordan coefficients for SU(4) that would be required for particle physics, including those 
decomposed with respect to SU(3), are obtained by using the general formalism of Baird and Biedenham. 

INTRODUCTION 

There has been a renewed interest in the unitary 
symmetry group SU(4), which was first considered in 
particle phySics more than a decade ago. 1 The reason 
for this is the discovery2 of the ljJ-resonances at BNL 
and SLAC. The narrow width of the 1jJ(3095) and the 
,P(3684) has led to the speculation that perhaps a new 
additive quantum number, called "charm,,,3 should be 
introduced. A verification of the SU(4) classification of 
the hadron spectrum a waits the discovery of resonances 
carrying nonzero charm number. At present, there is 
no compelling data to support any observational claim 
for the existence of charmed particles. In the following, 
we shall compute all the Clebsch-Gordan coefficients 
necessary to perform calculations within an SUe 4) 
scheme involving scattering amplitudes and decay 
ampli tudes. 

The calculation of Clebsch-Gordan coefficients in 
SU(4) requires an evaluation of coefficients decomposed 
with respect to SU(3). This decomposition was under
taken earlier in the year4 for two SU(4) expansions, 
namely ~ c;:;. ~ and 20' @ 12. In the present work we 
shall give coefficients for all the expansions likely to 
occur in particle physics. A list of the thirteen relevant 
relevant expansions 5 appears at the head of Table IV. 

We summarize, in Sec. 2, a few important facts 
about SU(4), while the outline of the computational meth
od for calculating the coefficients is carried out in Sec. 
3. Section 4 contains the following Tables: the SU(3) 
subduction of all 26 SU(4) representations occurring in 
the expansions 6 (Table I), all the isoscalar factors re
quired in the calculations (Table II) and their symmetry 
factors (Table III), the SU(3) singlet coefficients (Table 
IV) and the Significant symmetry factors (Table V). 

2. GENERAL PROPERTIES OF SU(4) 

For a thorough coverage of the most important as
pects of SU(n), the reader is referred to the papers of 
Biedenharn, and Baird and Biedenharn,7 which we shall 
use extensively in our calculations of the SU(4) coeffi
cients. We shall discuss some of the basic properties of 
SU(4) before computing coefficients. 

SU(4) is the covering group corresponding to the rank
three Lie algebra A 3 • The three conserved quantum 
numbers 13 , Y, and Z are related to the charge Q by the 
extended Gell-Mann-Nishijima relation 

Q=/3 +iY+aZ +bN, (2.1) 

where 13 , Y, and N are the third component of isotopic 
spin, hyper charge and baryon number, respectively. 
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The charm number C is defined by 

C=aZ+bN. (2.2) 

Here, a and b are constants that depend on the choice of 
a specific model. In the remainder of this paper, only 
Z will be used, for it is model independent. The charm 
number of the various states can then be found from Eq. 
(2.2), USing a and b determined by a specific choice of 
model for the quark charges. 

The four quarks q = (p, n, A, c) are described by the 
fundamental representation 4 of SU(4) which has the 
SU(3) decomposition -

(2.3) 

For the choice of fractional charges of the four quarks 
in the Moffat modelS we have a = t and b = - t, while in 
the Glashow, Iliopoulos, and Maiani mode19 a = -1 and 
b=~. 

The outer product of i and !* gives 

i@!*=~ +~, (2.4) 

and the mesons are assigned to the adjoint representa
tion 11.. This representation has the SU(3) decomposition 

11.=1 +~ +~* +8. 

The baryons fit into the product 

i@!(8;!=±+2(20')+20. 

(2.5) 

(2.6) 

The JP = ~ + baryons are assigned to the representation 
20'. The JP = r isobars are placed in 20 which contains 
a decuplet with C = O. The 20' and 20 have the SU(3) 
decompositions 

20'=1 +1* +2. +~ 

and 

20=1 +~ +£ +10. 

Mass sum rules have been obtained for the mesons 
and baryons in SU(4) and SU(8), 10,11 including the famil
iar Gell-Mann-Okubo mass formula for the C = 0 
particles. 

Let us conSider some important computational as
pects of the SU(4) coefficients. Each state in a repre
sentation can be described by a lexical Young tableau 
with partition [AJ = (AI? A2? A3)' where Ai is the number 
of boxes in the ith row of the Young tableau. 

ConSider now the tableau with the form: 

First row: m ll l's, followed by (m 12 - 111 11 ) 2's, ' .. , 
(m 14 - 111 13 ) 4's. 
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Second row: m Z2 2 's, followed by (m 23 - m 2) 3's and 
(m 24 - m 23 ) 4's. 

Third row: m33 3's, followed by (m34 - m33) 4's. 

The partition of this tableau is [A J = (m 14' m 24 , m 34 ). We 
denote the state associated with the tableau by 

which Biedenharn called the Gel'fand pattern of the 
state. The ml/s are related to the eigenvalues of the 
state through the following equations: 

1=t(m 12 -m 22 ), 

1.=m11 -Hm12 +m 22 ), 

y= m12 +m 22 - Hm 13 + m 23 +m33 ), 

Z=m 13 +m23 +m33 -t(m 14 +m 24 +m34 +m44)· 

Here, m 44 is always zero. 

(2.7) 

The requirement that the Young tableau be lexical 
leads to the condition that 

m i • i +1 ? mu? mi+1,j+l· (2.8) 

The highest state in a given representation (denoted by 
m 141 m 24 , and m 34) is uniquely defined by the triangular 
pattern, whose m i/S are as large as allowed by Eq. 
(2.8). In terms of m14, m24, and m34 (hereafter, called 
p, q, and r) the eigenvalues of the maximal state of an 
SU(4) representation read 

IH=t(p -q), 

YH=~(P +q -2r), 

ZH=t(P +q +r). 

(2.9) 

This means that the highest state in a representation 
is the one that has maximal Z, then maximal Y, and 
then maximal lz. For instance, the maximal state in 
!,Q..has (Iz, Y,Z)=(t,~,l). In a more precise, if more 
cumbersome, language, we could say that the maximal 
state is the one with highest I z in the SU(2) submultiplet 
having the highest Y, and belonging to the SU(3) sub
multiplet with the highest Z in the SU(4) representation. 

The same considerations carryover to SU(3), where 
the maximal state in a representation is the one with 
highest hypercharge, and then highest I z . Of two SU(3) 
representations, the highest is defined to be the one 
that contains the SU(2) submultiplet with the highest 
hypercharge. 

Thus, a higher dimensional representation in SU(3) 
is not necessarily higher in our sense (e. g., §.* is 
higher than (L and ~ is higher than 24). Only in SU(2) 
do the two meanings coincide: The higher SU(2) multi
plet is the higher dimensional one, corresponding to the 
higher isospin. 

It is seen that these conventions differ from those 
adopted by de SwartlZ in his tabulation of SU(3) coeffi
cients, Nevertheless, we feel that using the Gel'fand 
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pattern, with Biedenharn's convention, is mathematical
ly more consistent, especially as we proceed to higher 
dimensional SU(n) groups. 

3. COMPUTATION OF THE SU(3) SINGLET 
COEFFICIENTS 

To calculate the coefficients, we first need the matrix 
elements of the SU(4) generators. There are 15 of 
these, and we write the infinitesimal generators in 
terms of the matrices E ij used by Weyl. 7 In the funda
mental representation, E ij is the matrix consisting of 
unity in the (ij)th pOSition and zeros elsewhere. These 
generators obey the rule 

[E ii,E kl J= 0jk E il -OilERj, 

where all indices run from 1 to 4. 

Define the lowering operators: 

E21 =L, E41 =K., 

E 31 =V., E 42 =L., 

E 32 =U., E43=M .. 

(3,1) 

(3.2) 

E21 generates the isospin subgroup, E31 and E32 
generate the V-spin and U-spin subgroups of SU(3). The 
other operators generate three SU(2) subgroups in 
SU(4). 

The matrix elements, written in terms of the Gel'fand 
notation, are then given by Eqs. (60) and (61) of Baird 
and Biedenharn's Paper II. We reproduce Eq. (60) for 
the reader's convenience: 

mi."'l -1 
(3.3) 

1/1 11 

This formula is very easily put on computer, allowing 
for a rapid calculation of all matrix elements in all 
representations, a task which would be otherwise rather 
forbidding. 

Equation (61) in Baird and Biedenharn (II), gives the 
result for the general matrix element of a generator 
E"k (n "> k). This may be obtained from the formula for 
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TABLE I SU(3) subduction of SU(4) representations 

Rep. of SU (4) 4 6 10 15 20 

SU (3) submultiplets 3 1 3 3 6 3 1 3 1+8 3 10 6 3 1 

Z i 3 ~ 1 ! 1 3 1 0 -1 i 1 _i _ll. -4 -2 -2 -2 -4 4 4 

Rep. of SU(4) 20' 20" 36 45 

SU (3) submultiplets 8 3+6 3 6 8 6 6 3 +15 1+8 3 15 8 +10 3+6 3 

Z 3 1 - So 1 0 -1 .. 1 3 _1. 1 0 -1 -2 4 -4 4 4 4 -4 4 

Rep. of SU(4) 50 60 64 

SU (3) submultiplets 10 15 15 10 15 6 +15 8+10 6 8 3+6+15 3+6+15 8 

Z 3 1 1 3 ~ 1 3 Z. 3 1 1 3 
2 2 -2 -2 4 -4 - 4 2 2 -2 -2 

4 

Rep. of SU (4) 70 84 

SU (3) submultiplets 10 6 +24 3 +15 1 +8 3 6 3 +15 1 +8+27 '3 +15 6 

Z 3 1 1 3 §. 2 1 0 -1 -2 2 2 -2 -2 - 2 

Rep. of SU (4) 84' 84" 105 

SU (3) submultiplets 24 15 + 15' 8+10 3+6 3 28 21 15' 10 6 3 1 15' 24 27 24 15' 

Z ~ 1 3 _1. - !J. Q 1 1 -~ -i - 1 -~ 2 1 0 -1 -2 4 -4 2 2 -2 
4 4 4 2 2 

Rep. of SU(4) 120 

SUCl) submultiplets 15' 10+ 35 6+24 3 +15 1+8 :3 
Z ~ 3 1 -~ -!!. _!1 4 -4 

4 4 4 4 

Rep. of SU (4) 126 140 

SU (3) submultiplets 27 15+24 6+15+15' 8+10 6 35 21 +24 15 + 15' 8 + 10 3+6 3 
1 3 Q 1 1 3 5 Z ~ ! -2 -2 - ~ 2 2 -2 -2 - - 1 

2 2 

Rep. of SU(4) 140' 140" 

SU (3) submultiplets 24 10+27 15+24 15 + 15' 10 15 8+10+27 3+6+15+24 3+6+15 

Z 1 i 1 -2. _ll. I- 3 1 5 -4 4 -4 -4 4 4 4 4 

Rep. of SU (4) 175 224 

SU (3) submultiplets 15 6+15+24 8+10+10+27 6 +15 +24 15 42 27 +35 15+21 +24 6+15+15' 8 +10 

Z 2 1 0 -1 -2 1 3 1 -2. _ll. 4 -4 
4 4 4 

Rep. of SU(4) 256 

SU (3) submultiplets 24 15+15' +42 8+10+27+35 3 + 6 +15+24 3 + 6 + 15 8 

Z 2 1 0 -1 -2 -3 

Rep. of SU(4) 300 

SU (3) submultiplets 10 6 +24 3 + 15+42 1 + 8 +27 +64 3+15+42 6+24 10 
Z 

3 2 1 

En,n-i> through the use of the commutation relations 
(3.1). 

Equation (3.3) also embodies the general sign conven
tion for SU(n) generators: The matrix elements of En "-1 
are defined to be positive. This means that, in SU(4); 
i_, U_, and M_ are positive. The signs of the matrix ele
elements of the other generators then follow from the 
commutation relations. 
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0 -1 -2 -3 

The general SU(4) Clebsch-Gordan coefficient is 
written as 

where 
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8 

- !!. 
4 

6 

_11 
4 

(3.4) 
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Isoscalar factors are tabulated for the following expansions: 

lIA: 3(2) 3 = :3 + 6 

lIB: 30 :3 = 1 + 8 

lIC: 3(2) 8=3+6+15 

lID: 6(2) 3=8+10 

lIE: 60 :3 = 3 + 15 

IIF: 6(2) 6 = 6 + 15 + 15' 

IlG: 60 6=1 +8+27 

IlH: 60 8=:3 + 6+ 15+ 24 

III: 808=1 +8D +8F +I0+1O+27 

IIJ: 1 0:>9 3 = 1 5 + 1 5' 

IlK: 1 00 :3 = 6 + 24 

IlL: 100 6 = 15 + 21 + 24 

lIM: 10(2) 6 = 3 + 15 +42 

lIN: 100 8=8+10+27+35 

lIO: 10010 =10+27+28+35 

lIP: 10010 = 1 + 8 + 2 7 + 64 

( 

Vl v2 I VJ Z Z Z is the SU(3) singlet factor, 
III 1 112 2 Il 

(

Ill 1l211l) A YAY A Y is the SU(2) singlet (de Swart) 
1 1 2 factor, 

C~h~ is the SU(2) Clebsch-Gordan coefficient. 
I1ZI2ZlZ 

To complete our phase conventions, we will say that the 
highest Clebsch-Gordan coefficient is defined to be 1. 
This also makes the highest SU(3) singlet factor to be 
1. From the conSiderations in Sec. II, the highest table 
in a given vl 0v2 SU(4) expansion is the one that has the 
highest Z, and then the highest /l, /l being an SU(3) 
subgroup. Within a table, the highest factor involves 
the highest Ill> and then the highest 1l2 • We emphasize 
that "highest" must be taken in the sense of Sec. II. If 
v 1 = V2 = 8, we define 8 D to be higher than 8 F' 

In the same way, when computing Table II, which 
gives all relevant isoscalar factors, the highest table 
in a given III 12 /l2 expansion is the one with the highest 
Y, then the highest A. Within a table, the highest factor 
has the highest A1> then the highest A2 • Here, of course, 

2,-5 1, _ 4. 

\, YI;A" Y2 :3 6 1~'YI;~'Y2161 
1, - .~; 2,~ - 1//2 1//2 11, -~; 1, -~11 J 
2,5;1.-~ 1//2 1//2 
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2,1 

1,0 2, -1 

AI' Yl;~' Y2 1 8 ~'YI;~' Y2 8 

1,-~;1,~ 1/,{3 v'273 1, -3; 2,-! 1 

2,~; 2, -! \f273 -1/,{3 

since Ai' A2, and'\ are SU(2) representations, highest 
also means highest dimensional. 

Table III gives the phase factors £1 and £3 associated 
with the following symmetry properties of the isoscalar 
factors: 

(A~;' A~;' 
(A'~' A~;' 

(3.5) 

Table V gives the phase factors 7)1 and 7)3 associated with 
the symmetry properties of the SU(3) singlet factors: 

v2 I V

J 
( V

2 VI 
=7)IEl 

1l2 Z2 /lZ 1l 2 Z 2 /llZl I :z), 
(3.6) 

",,"~ z, I Ii, ~ z) 

4,~ 

2,~ 

\, Y 1;A2, Y2 3 6 15 

I, -5; 2,1 13/2/2 -1/2 \13/2/2 

2 ,~; 1,0 -1/4 ,{3/2/2 3/4 

2,j; 3,0 3/4 ,13/2\12 -1/4 

3, - ~ 

At, YI ;A2, Y2 6 15 

1, -~; 3,0 -1//2 1//2 

2"L2,-1 1/v'2 1/,'2 

1, -~ 2, -~ 

Aj, Yj;~'Y2 3 15 

1, -~; 1,0 1/2 ,{3/2 

2,-5; 2,-1 ,{3/2 -1/2 
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4,t 2,1 

3,0 1,0 

AI, YI;~' Y2 8 10 '~,Yj;~'Y2 15 15' AI' Y I ;~, Y2 '6 15 

2, -~; 2,~ -1//3 1273 2, -!; 3,~ -1/~ 1/v'2 2, -!; 3,% -1/~ 1/v'2 

3,~; 1,-~ J2T3 1//3 3,~; 2, -! 1/v'2 1/v'2 3,~; 2,-i 1/v'2 1/v'2 

2, -1 1, -2 3, -% 
AI' YI;~' Y2 8 10 AI, YI;~' Y2 10 ~'YI;~' Y2 (; 15 15' 

1, -}; 2,! -{273 1//3 1,-};1,-~ 1 

2, -~; 1,-~ 1//3 V273 

1, -}; 3,% 1//3 -1/v'2 1/{6 

2, -~; 2, -i -1//3 0 v'273' 
3,%;1,-i 1/'1"3 1/,;2 1/{6 

2, -} I, -} 

~, Yl;~' Y2 15 15' I ~'YI;~' Y2 115' 1 
I, -}; 2,-! -1/12 1/12 II, -;; I, -til I 
2,-!;1.-; 1/12 1/~ 

3,2 4,1 

2,1 

~, Yl;~' Y2 8 27 2,0 

2, -!; I.} ,f215 13!5 
3,%; 2,! .f375 -/215 

3,0 1,0 

~, YI;~' Y2 8 27 AI' YI;~' Y2 1 8 27 

2, -!; 2,! 1/15 2/v'5 I, -}; I,} 1/l6 2J27f5 ,f37fO 

~,Yj;~'Y2 3 15 3,%;3,-~ 2/v'5 -1/v'5 2, -~; 2,i 1/'1"3 l/m -.J375 

2, -3; l,~ 1/2 /3/2 3,~; 3,-i 1Hz -,'275 l/m 

3,~; 2, -~ {3/2 -1/2 
4, -1 2, -1 

AI' YI;~.Y2 8 27 

1, -~ 1.-;;2,! v'275 v'375 

Aj, YI;~' Y2 3 15 2, -~; 3,-! V375 -,f275 
3, -2 

I, -}; 1,~ 1/~ 1/~ 

2, -i; 2, -! 1/~ -1/~ 
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2,~ 

3,%; 2,1 

;'-i, Yj;A:?, Y 2 15 
3,%;2,1 1 

~ , Yj ;A:?, Y2 24 

3,~; 3,0 1 

~,Yj;A:? Y2 6 15 

2, -~; 2,1 ~'37IO -11l6 

3,%; 1,0 -l/m 1//2 

3,~; 3,0 ,,13/5 l/n 

1 ,.~ 

~, Yj;A:?, Y2 :3 15 

2, -~; 2,1 1/2 /3/2 

3,%; 3,0 f3/2 -1/2 

4, -~ 

~,Yj;A:?'Y2 15 24 

2,-~;3,O -1/f3 12/3 

3,~;2,-1 ,1273 IN3 

2, -~ 

~,Yj;A:?' Y2 3 6 

I, -}; 2,1 -1/2 /37fO 
2,-~;l,O f3 /4 1/2flO 

2, -,\; 3,0 -13/4 3/2flO 

3,~;2,-1 ,;3/2/2 3/2V5 

3 
_ ,I , -

~ 

AI, Y j ;A2, Y 2 15 

l,-~;3,O -,1273 
2,-~;2,-1 1//3 

24 

1/,;3 

v'2!3 

24 

2V27f5 

,f275 
-l/ill 

15 24 

-1/2 1/V5 

f3/4 1375 
5/4f3 -lim 

-1/216 -127f5 

~, YI;A:?, Y2 6 

l,-~;l,O v'275 
2, -~; 2, -1 v'375 
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24 

,"375 
-1275 

TABLE III. (,ay A ~21") . 
" j 2 XY 

3,2 1,2 4,1 
.' 

1~'YI;A:?'Y2 10 1 ~. YI ;A:?,Y2 10 27 

l 2,1; 2,1 1 I 2,1; 3,0 -1//2 1/;12 

3,0; 2,1 1//2 1//2 

2,1 

~'YI;A:? Y2 Sn SF 10 27 

1,0; 2,1 -1/2V5 1/2 -1/2 3/2/5 

2,1; 1.0 -1/U5 -1/2 1/2 3/2V5 

2,1; 3,0 - 3/2V5 1/2 1/2 -1/2V5 

3,0; 2,1 3/2V5 1/2 1/2 1/2V5 

3,0 

'~, Yj;"z, Yz 8n SF 10 10 27 

1,0; 3,0 1/15 0 -1/2 -1/2 I37fO 
2,-1;2,1 -,,13/10 1/16 1/16 -1/16 IN5 

2,1; 2,-1 -,f3!fO -lN6 -1/16 1//6 1/V5 

3,0; 1,0 1/15 0 1/2 1/2 ,137lO 
3,0; 3,0 0 ,'273 -1//6 1//6 0 

1,0 

~, Yj;"z, Yz 1 Sn SF 27 

1,0; 1,0 -1/2ft -1//5 0 3f3/2m 

2, -1; 2,1 1/2 INTo 1//2 ,;3 /2V5 

2,1; 2,-1 -1/2 -1/110 1//2 -V3 /2V5 

3,0; 3,0 f3 /2/2 -,/3/5 0 -1/2/To 

4, -1 

AI' Yj;A:?,Yz 10 27 

2,-1;3,0 -1/v'2 1//2 

3,0; 2,-1 1//2 1//2 

2, -1 

~'Yl;"z,YZ Sn SF 10 27 

1,0;2,-1 -1/2V5 -1/2 -1/2 3/2,;5 

2, -1; 1,0 -1/215 1/2 1/2 3/2/5 

2, -1; 3,0 3/215 1/2 -1/2 1/2,'5 

3,0;2,-1 - 3/2/5 1/2 -1/2 -1/215 

3, -2 I, -2 
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3'f 

~, YI;~' Y2 15 15' 

3,0; 2,! -1/2 /3/2 

4,1;1,-~ /3/2 1/2 

3, -~ 1, -~ 

~, YI;~' Yz 15 15' 

2, -1; 2,! - 1//2 l/ft 

3,0; 1,-~ 1//2 l/ft 

2, -} 1, -~ 
--"-

AI' YI ;~, Y2 15 15' I At'YI;~'Y2115~ 
1, -2; 2,~ -/3/2 1/2 11, -2; 1, -~ 11 J 

2, -1; l,-J 1/2 /3/2 

5,~ 

4, -! 
At, YI;~' Y2 6 24 

3,0; 1, ~ 1/,{5 2/-15 

4,1;2,-! 2/,{5 -1/,{5 

2, -! 
At, YI;~' Y2 6 24 

2, -1; 1,~ ,f2(5 .J375 
3,0;2,-! .f'.f75 -J275 

1, -~ 2, -f 
AI , YI ;>.z, Yz 6 24 I At, YI;>.z, Y2 1241 
1, -2; 1,~ .f3T5 ,f2J5 11,-2;2,-!l l l 

2,-1;2,-! .f275 -/375 
I 
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6,~ 
3 

4, 1; 3,~ 

At, YI ;>.z, Y2 

3,0; 3,~ 

4,1;2, -! 

1 ,~ 

2,-! 

AI' YI;>.z, Y2 

2,-1;3,~ 

3,O;2,-! 

1, -~ 
3 

5,~ 

21 

J375 
J275 

15 

-{273 

1//3 

4,~ 
3 

AI' YI;>.z, Y2 

4,1;3,! 

24 

-.J275 
.f375 

2 2-
'3 

AI' YI;>.z, Y2 

4,1; 3,~ 

3,~ 

AI' YI;Az, Y2 15 

3,0; 3,% -1//3 

4,1; 2, -! .f213 

4, -! 

AI' YI;Az, Y2 ]5 21 

24 

.f2l3 
1//3 

24 

2, -1; 3,~ . 1/{6 v'37fO - 2v'27f5 

3,0; 2,-! -1//3 .f'.f75 l/ill 
4,1;1, -} l/ft I/JIT .f215 

24 

1//3 

1273 

3, -t 
AI' YI;>.z, Y2 15 21 24 

1, -2; 3,~ l/ft l/m -f'l75 
2, -1; 2,-! - 1/v'3 i375 -1/ill 

3,O;1,-~ 
3 

1/{6 v'37IO 2v'27I5 

2, -r 
Al , Y I ;>.z, Yz 21 24 

1,-2;2,-! 1275 -J3'75 
2, -1; 0, -f flf75 vm 

] -!! , 3 

Haacke, Moffat, and Savaria 2047 



                                                                                                                                    

:\1' Yl;~'Y2 

3,0; I, i 
4,1; 2,~ 

>-t, Yl;~'Y2 
3, 0; 2,~ 

4,1; 3,-~ 

5, -~ 

:\1' Yl;~' Y2 

1,-2;1,~ 
3 

2,-1;2,~ 

3,0; 3,-~ 

4 -' , -
3 

3,:!. 
3 

15 

5 1. , 3 

:\1'Yl;~'Y2 42 

4,1; 2,~ 1 

42 

1/,;3 J273 4,1; 3, -~ 1 

/273 -1/,;3 

4,~ 

15 42 

1/16 v'576 
v'576 -1/16 

2,~ 

:\I'Yl;~'Y2 3 15 42 

2,-1;1,} 1/m- 1//2 {"2f5 

3,0; 2,S ,f37IO 1/16 -2/2715 

4,1; 3,-~ .J375 -1/,;3 l/m 

3, -~ 

:\1' Yl;~' Y2 15 42 

3,0; 3,-~ f273 -1/13 

2 -1; 2 J 1/13 1273 

1, -~ 

3 15 42 

v'37fO l/n 1/15 

,f275 0 -1375 
,!37iO -1//2 1/V5 

2 - ~ , 3 

:\1' Yl;~'Y2 15 42 

1, -2; 2,~ 1//2 l/n 

2, -1; 3,-~ l/n -l/n 

2048 J. Math. Phys., Vol. 17, No. 11, November 1976 

6,1 

4,1 

>-t, Y1;A.z, Y2 10 27 35 

3,0; 2,1 1/2 -1/2/2 v'5/2n 

4,1; 1,0 -1/2n 3/4 V5/4 

4,1; 3,0 15/2/2 V5/4 -1/4 

2,1 

:\I'Yl;~'Y2 8 27 

3,0; 2,1 1/v'5 2/V5 

4,1; 3,0 2/v'5 -1/V5 

5,0 

>-t'Yl;~' Y2 27 35 

3,0; 3,0 -1/2 ,;3/2 

4,1; 2, -1 v'3/2 1/2 

3,0 

:\1' Yl;~'Y2 8 10 27 35 

2, -1; 2,1 -127i5 1/13 -1/V5 1/13 

3 0; 1 0 1/v'5 0 ,f37IO l/n 

3,0; 3,0 -v'27I5 1/13 3/2v'5 -1/213 

4,1;2,-1 2127f5 1/13 -1/2v'5 -1/213 

1,0 4, -1 

>-t'Yl;~' Y2 8 27 :\1'Yl;~'Y2 27 35 

2,-1;2,1 .J275 v'375 2, -1; 3,0 -l/ft 1/12 

3,0; 3,0 v'3T5 -1275 3,0; 2,-1 l/n l/n 

2, -1 

>-t, Y1;A.z, Y2 8 10 27 35 

1,-2;2,1 -1275 1/2 -3/2m 1/2n 

2, -1; 1,0 1/v'5 1/212 3/4v'5 3/4 

2,-1;3,0 - J/v'5 1/2/2 7/4v'5 -1/4 

3,0; 2 -1 1/V5 l/n -1/2v'5 -1/2 

3, -2 1, -2 

:\1' Yl;~'Y2 27 35 :\1, Y1;A.z,Y2 10 35 

1,-2;3,0 -13/2 1/2 I, -2; 1,0 l/ft l/n 

2 -1; 2 -1 1/2 J374 2,-1;2,-1 1/12 1-1/ft 

2, -3 
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7,2 5,2 

1,2 6,1 

At. Yj;A:!, Y2 28 35 4,3 5,2 

3,0; 4,1 l/ft -l/ft 

4,1; 3,0 l/ft l/ft 

4,1 2,1 3,2 6,1 

At, Yj;A:!, Y2 27 35 At, Yt ; A:! , Y2 10 27 At, Yt;l\.z, Y2 27 64 

3,0; 4,1 -l/ft 1/12 3,0; 4,1 -1/12 1/n. 3,0; 1,2 .f37'f 2/../7 

4,1; 3,0 l/ft l/ft 4,1; 3,0 1/n. 1/12 4,1; 2,1 2/../7 -v'377 

5,0 4,1 2,1 

At, Yt;A:!, Y2 27 28 35 At, Yt;l\.z, Y2 27 64 At, Yt;A:!, Y2 8 27 64 

2, -1; 4,1 mro 1//5 -1/12 3,0; 2,1 .f277 ..f5fi 2, -1; 1,2 1/,[5 3v'n35 ,ff77 

3,0; 3,0 -v'275 ft75 0 4,1; 3,0 J577 -12l7 3,0; 2,1 ..f275 1//35 -2/../7 

4,1; 2, -1 I37fO 1//5 1/12 4,1; 3,0 I2l5 -4//35 1/17 

3,0 
7,0 5,0 

Alo Yt;A:!, Y2 10 27 35 

2,-1;4,1 1//3 -1/12 1/16 
At, Yt ;A:!, Y2 27 64 

3,0; 3,0 1/../7 .f677 
3,0; 3,0 -1//3 0 ,f2"J3 

4.1;4,-1 .f677 -1/../7 
4,1;2,-1 1//3 1/12 1/16 

3,0 
1,0 

At,Yt ;l\.z,Y2 8 27 64 

2, -1; 2,1 l/m 4/35 ff072i1 
3,0; 3,0 2/m 3/,[35 -m72T 

4, -1 
4,1; 4,-1 {2,73 -J'l.7f 1/v'2T 

At, Yt;A:!, Y2 10 27 28 35 

1,-2;4,1 -1/2 3/2/5 1/2/5 -1/2 1,0 

2,-1;3,0 1/2 -1/2v'5 3/2v'5 -1/2 At, Yt;l\.z, Y2 1 8 27 64 

3,0; 2, -1 -1/2 -1/2v'5 3/2/5 1/2 1, -2; 1,2 l/ill ,ffJ5 3137IO 2//35 

4,1; 1 -2 1/2 3/2v'5 1/2,[5 1/2 2,-1;2,1 1/,[5 1/15 -~ -3v'27§5 

2, -1 3,0; 3,0 V37fO 0 -{57I4 2v'373'5 

At, Yt;l\.z, Y2 27 35 4 1; 4, -1 ,ff75 -1'l75 .f6735 - 1//35 

2,-1;3,0 -l/ft 1/12 
6,-1 4, -1 

3,0; 2, -1 l/ft 1/12 
Alt Yt ;A:!, Y2 27 64 

3, -2 
2,-1;3,0 1277 .J57f 

At, Yt ;A:!, Y2 27 28 35 

1, -2; 3,0 v'37iO 1/,[5 1-1/12 

2, -1; 2,-1 --1275 V375 0 

3,0; 1, - 2 v'37iO 1/,[5 1/12. 

3,0; 4,-1 1577 -,f2J7 

2, -1 5, -2 

At, Yt;A:!, Y2 8 27 64 

1, -2; 2,1 1/15 3J2735 ,ff77 
1, - 2 2, -3 

2,-1;3,0 1275 1//35 -2/../7 
At, Yt;A:!, Y2 28 35 

3,0;4,-1 I'l75 - 4//35 1/../7 
1, -2; 2,-1 1/12 -l/ft 

2,-1;1,-2 1//2 1//2 3, -2 4, -3 

1, -4 At, Yt;A:!, Y2 27 64 1 At, Yt;A:!, Y2 1 64 1 

1,-2;3,0 v'377 2/17 11,-2;4,-111J 

2, -1; 4,-1 2/../7 -.f'J77 
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TABLE III. Phase factors involved in the symmetry properties of SU(3) singlet factors. 

Xt X2 X €t €3 10 -1 

3 3 :3 -1 1 10 -1 

6 1 1 27 1 

3 :3 1 -1 -1 10 3 15 -1 
8 1 1 15' 1 

3 8 3 -1 -1 10 :3 6 -1 -1 
Ii -1 1 24 

15 1 1 
10 6 15 1 

6 3 8 -1 1 21 1 1 
10 1 1 24 -1 1 

6 :3 3 -1 -1 10 Ii 3 1 
15 1 1 15 -1 -1 

6 6 Ii 1 1 
42 1 

15 -1 -1 10 8 8 1 -1 
15' 1 1 10 -1 -1 

6 Ii 1 1 1 
27 -1 

8 -1 -1 35 1 

27 1 1 10 10 10 -1 1 

6 8 :3 1 -1 
27 1 1 

6 -1 -1 
28 1 1 

15 -1 1 
35 -1 

24 1 1 10 10 1 1 

8 8 1 1 1 
8 1 1 

8D 1 1 
27 -1 -1 

8F -1 -1 
64 1 

TABLES IVA. -IVM. SU(3) singlet factors (~kl ,,';i2 1 .:z). SU(3) singlet factors are tabulated for the following expansions: 

IVA: 15015= 1 + 15D + 15F + 20" +45+'45+ 84 

IVB: 20015= 20+ 20' + 120 + 140" 

IVe: 20020=50+84"+126+140 

IVD: 20020=1+15+84+300 

IVE: 20020'=64+70+126+140 

IVF: 20020' = 15 + 45 + 84 + 256 

IVG: 20020"=36+140"+224 
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IVH: 20' 015= 4+ 20+ 20~ + 20;+ 36+ 60 + 140" 

IVI: 20'020' = 6+ 10 + 10+ 50 + 64D + 64F + 70+ 126 

IV J: 20' 020' = 1 + 151 + 152 + 20" + 45 + 45 + 84 + 175 

IVK: 20' 020" = 4 + 20' + 36 + 60 + 140' + 140" 

IVL: 20" 015=15+20" +45+45+ 175 

IVM: 20' 020' = 1 + 15+ 20" + 84 + 105+ 175 
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6 2 6,1 

IJ.l,Zl;!l2,Z2 20" 45 
3,1;3,1 

3,1;8,0 -1/,[2 1/./2 

15,1 8,0;3 1 1/./2 1/,[2 

IJ.l,Zl;IJ.2,Z2 45 84 

3,1;8,0 -1/,[2 1/,[2 

8,0;3,1 1/,[2 1/,[2 

3,1 27,0 

IJ.IZ 1;IJ.2,Z2 15D 15F 45 84 84 

1,0;3,1 1/3,[2 -1/16 -1/13 2/3 1 

3,1;1,0 1/3,[2 1/16 1/13 2/3 

3,1;8,0 - 2/3 1/13 -1/16 1/3,[2 

8,0;3,1 2/3 1/13 -1/16 -1/3,[2 

10,0 10,0 

45 

8,0;8,0 8,0;8,0 

8,0 

IJ.t> Z l;!l2,Z2 15D 15F 20· 45 45 84 

1,0;8,0 -1/3,[2 0 1/16 1-1/2 -1/2 ..f5/3,[2 

3,1;3,-1 INs 1/2,[2 -1/2,[2 -13/4 13/4 ..f5/216 

3,-1;3,1 1/16 -1/2,[2 -1/2,[2 13/4 -13/4 ..f5/216 

8,0;1,0 -1/3,[2 0 1/16 1/2 1/2 ..f5/3,[2 

8,0;8,0 0 13/2 0 1/2,[2 -1/2,[2 0 F 

8,0;8,0 15/3 0 15/213 0 0 -1/6 D 

1,0 15,-1 
IJ.t> Z l;IJ.2,Z2 1 15D 15F 84 IJ.t> Z l;IJ.2,Z2 45 84 

1,0;1,0 -l/ill ,[2/3 0 4,[2/3..f5 3,1;8,0 -1/,[2 1/12 

3,1;3,-1 1/15 -1/16 1/,[2 h/15 8,0;3,1 1/12 1/12 

3,-1;3,1 -1/15 1/16 1/-12 -h/15 

8,0;8,0 2h/15 2/3 0 -1/315 

6,-1 3,-1 

IJ.l,Zl;IJ.2,Z2 20" 45 IJ.t> Z l;!l2,z2 15D 15F 45 84 

3,-1;8,0 -1/-12 1/-12 1,0;3,-1 1/3,[2 1/16 -1/13 2/3 

8,0;3,-1 1/,[2 1/-12 3,-1;1,0 1/312 -1/16 1/13 2/3 

3,-1;8,0 2/3 1/13 1/16 -1/3""2 

8,0;3,-1 -2/3 1/13 1/16 1/312 

6,- 2 
3,-2 

84 45 

3,-1;3,-1 1 3,-1;3,-1 1 
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15' ,1 15,* 35, ~ 

10,!;3,1 10,!;3,1 10,!;8,0 

27,! 10,! 

!l1,Zt;J.l2,Z2 20 120 140" 

10,!;8,0 6,-!;3,1 - 2/121 3/m -1//6 

10,!i1,0 1/121 h/7 h/3 
10,!;8,O 4/121 1/m -1/.(6 

8,! 24,-! 

J.lj, Z t;J.l2,Z2 20' 140· J.lt> Z tiJ.l2,Z2 120 140" 

6,-t3,1 1//6 .f5;6 6,-t8,0 .{3/2 -1/2 

10,!;8,0 ..(5/6 -1/-16 10,!i3,-1 1/2 .[3/2 

- 1 15,-4 6,-! 

J.lt> Z tiJ.l2,Z2 20 20' 120 140' 

6,-!;8,0 3,-~i3,1 -4/3.f7 -1/3 15/14 - ..(5/3..[2 

6,-!;1,0 -1/3121 2/3.{3 hO/21 ru/3.{3 

6,-!i 8 ,0 4V5/3v2I ..(5/3.[3 h/21 - 2-12/3.{3 
3 -10,4i 3 ,-1 2..(5/3.f7 - ..(5/3 l/m 1/312 

3, -! 
J.lj, Z t;J.l2,Z2 20' 140" 

3,-~i3,1 1/.{3 .f273 
6,-!i 8 ,0 -../2/3 1/13 

15,- f 6,-~ 

J.lt,ZtiJ.l2,Z2 120 140" 140" 

3,- ~i8,0 1/..[2 1/..[2 3,-t;8,O 1 
1 -6,-4;3,-1 1/..[2 -1/12 

3,- i 8,- ! 
J.lt,ZtiJ.l2,Z2 20 20' 120 140" I-lt,ZtiJ.l2,Z2 120 140" 

1,- i;3, 1 2/ .f21 -1/.{3 1/.f7 -1/13 1,-~;8,0 1/2 .[3/2 

3,-~i1,0 5/3f21 2/3.{3 2/.f7 2/3.{3 3,- *;3,-1 v'3/2 -1/2 

.3,- h8,0 - 4-16/9.f7 2..[2/3v'3 1/m - 5/3/6 
1 -6,-4;3,-1 - 4.f2!3.f7 - ..[2/3 h/14 1/3-12 

3,- .l} 

!It,Zt;!l2,Z2 20 120 120 

1,-1;1,0 1377 2/.f7 1,- t;3,-1 

3,- i;3,-1 - 2/.f7 -1317 
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28J 35,i 27,i 

10,£;10,£ 10,i; 10, £ 

21 ,~ 

I't. Z l;1'2,Z2 84" 140 

10,i;10,~ 6,-tl0,~ 1/.f2 -1/.f2 

10,~;6,-! 1/.f2 1/.f2 

24,~ 

I'b Z l;1'2,Z2 126 140 I't. Z l;1'2,Z2 50 126 

6,-!;10,£ -1/.f2 1/.f2 6,-!;10,£ -1/.f2 1/.f2 

10,~;6,-! 1/.f2 1/.[2 10,£;6,-! 1/.f2 1112 

15' ,-~ 15,-~ 

I't> Z l;1-'2,Z2 84" 126 140 1'(> Z 1; 1'2, Z 2 50 126 ~40 
5 ;! 1/,f5 13/10 -1/12 3,-j;10,,1 

6,-!;6,-! .f375 -.f2i5 0 

3,-J;10.£ 1/v3 -1/.f2 1/16 

6,-i;6,-! -1/v3 0 \.f273 
10,£;3,-J 1/,f5 /3/10 1!12 10,£;3.- .§ 1/v3 1/.f2 1/16 

-6,-t 

6,-.t;6.- 4 

10.-i 

1'1. Z UI-'2. Z 2 50 84" 126 140 

9 0 3 1. - 4; 1 ,4 -1/2 1/2,f5 3/2,f5 -1/2 

3 -~'6-! , 4' t 
1/2 3/2,f5 -1/2.(5 -1/2 

6.-i;3.- t -1/2 3/2h -1/2.(5 1/2 

10.li;1,- ! 1/2 1/2.[5 3/2..f5 1/2 

8.-1 6 - ~ • 2 

I't. Z l;1'2. Z 2 126 140 1-'1. Z t;1'2,Z2 84- 126 140 

3 -.ii·6-! , 4' , -1/12 1/.f2 1 -~. 6 -! 
" 4' , 

1/,f5 h/10 -1/.f2 

6,-!;3.- f 1/12 1/12 3,- ~;3,- t 13/5 -12/5 0 

6 1 9 ,- 4;1,- A' 1/,f5 13/10 l/rz 

:3 - ~ , 2 3,- t 
J.ll,ZUI'2,Z2 84 ' 140 

1,- f;3,- i 1/12 -1/12 

3,- f; 1,- * 1/12 1/12 
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10,3 

300 

10,i;l,! 1 

6,2 

I-'lt Z l;I-'2,Z2 84 300 

6,-~;1,£ -13/2-12 ..[5/2rz 
3 - 5 

10,4;3'4 ..[5/2rz 13/2rz 

15,1 

I-'lt Z 1; I-'2,Z 2 84 300 

6,-t3,.§. -1/2 13/2 
3 - 1 10,4;6,4 13/2 1/2 

64,0 

10,i;10,-i 

8,0 

I-'l,Zl;I-'2,Z2 15 84 300 

5 - 5 
3,- 4;3'4 1/-121 - ..[5/2v3 v'i5/2v7 

1 - 1 6,-4;6,4 -,j5/21 1/13 fi!7 
10,i;10,-i -f577 1/2 1/2.(7 

1,0 

I-'l,Zl;I-'2,Z2 1 15 84 300 

1,-£;1,£ -1/2..[5 3/2v7 - 3/2..[5 ..f5/2v7 
5 - 5 

3,- '4;3'4 13/215 - 5/2-121 -1/2ill ill/2v7 
1 - 1-6,-4;6,4 -13/10 1/142 7/2.;30 ill/2m 

10,i;10,-i 1/rz ,j5/14 1/2rz 1/2m 

42,-1 

6,-t10,-i 

3,-1 

I-'1> Z l;I-'2,Z2 15 84 300 
9 - 5 

1'-4;3'4 1/.J'7 -l/rz ,j 5/14 
5 - ~ 3,- :t;6, - 2h/21 1/2/3 ill/2v7 

6,-i;10,-i hO/21 ..[5/213 v3/2.(7 

6,-2 

I-'1,Zl;I-'2,Z2 84 300 

1 -~. 6 ~ 
t 4 t , - v3/2rz .f5/2rz 

3,- !;lo,-i ..[5/2rz v3/2rz 
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3 - k 10,4;3, 4 

3 - 1 10,4;6,-4 

I-'1,Zl;I-'2,Z2 

3.-£;1,* 
1- - 5 6,-4;3'4 

3 - 1 10,4;6,4 

I-'itZ l;1I2,Z2 
1 - 1 

6,-4;6. 4 

10,i;10,-i 

1I1,Znl-'2,Z2 

3,- !;6,~ 

6,-~;10,- i 

l,-£;10,-i 

24,2 

300 

1 

42,1 

3,1 

15 84 300 

1/.(7 -1/,[2 h/14 

- 212721 l/Z.13 /15/2..[7 

..[10/21 75/273 h/2..f7 

27,0 

84 300 

.(7/2,[2 1/2,[2 

-1/2rz .(7/2,[2 

15,-1 

84 300 

-1/2 v3/2 

v3/2 1/2 

24,-2 
300 

1 

10,- 3 
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10,£;8,£ 

Ilj,Z 1 ;1l2'Z z 

6,-i;8,i 
3 - 1 10,4;3,-4 

10,£;6,- ! 

1l1,Zl;IlZ,ZZ 

6,-i;8,i 
3 - 1 10,4;3,-4 

1l1,Z 1; Ilz,Z z 

6,-!;6,-! 

10,£;3,- t 

1l1,Zl;llz,Zz 

3,- i;8, £ 
6,-!;6,-! 

1l1,Zl;llz,Zz 

3,- i;6,-! 
6,-!;3,- f 

!-tj,Z l;!-tZ,ZZ 

1,-~;6,-! 

3,- .2;3,-.2 

1,-1;3,-* 

8,~ 

24,t 

70 

1/2 

-1/212 

..{5/212 

3,- t 

6J 

64 

-1/v3 

fi73 

15' ,-t 
126 

-1/2 

..(3/2 

- 1 6,-2 

64 

h/5 

/3/5 

10,-~ 

126 

-1/12 

1/12 

6 - ~ , z 
126 

-v3/2 

1/2 

27J 

10,£;8J 

64 

126 140 

-1/212 ..{5/212 

3/4 ..{5/4 

v5/4 -1/4 

70 

.f213 
1/v3 

140 

v3/2 

1/2 

126 

v'375 
-/2/5 

140 

1//2 

1/12 

140 

1/2 

v3/2 

140 

1 

2055 J. Math. Phys., Vol. 17, No.1 1, November 1976 

10J 

21J 

140 

1 

-, 
15,2 

!-tlo Z 1;!-tZ,ZZ 64 126 

6,-i;8,i 1/..{5 2/..{5 

10,£;6,-! 2/..{5 -1/..{5 

- 1 3,2 

15,- t 
1l1,Zl;!-tZ,ZZ 64 70 126 140 

3 - .2'8 £ , 4' t -.f27l5 1/13 -1/v5 1/v3 
1 - 1 

6,-4;3,-"4 1/v5 0 ,j 3/10 1/..[2 

6,-!;6,-! -h/15 1/v3 3/2v5 -1/213 
3 - 5 10,4;3,- 4 2h/15 1/v3 -1/2v5 -1/2v3 

3,-t 

!-tlo Z 1;!-tZ,ZZ 64 70 

5 " 3,- 4;8,4 - .f2i3 1//3 

6,-i;3,- ! 1/13 ..[2/3 

8,-~ 

!-tlo Z n!-tZ,Z2 64 70 126 140 

l,-.l!;8J - ..[2/5 1/2 - 3/2iTo 1/2..[2 

3 - 1.:3 -! , 4' , 1/15 1/2..[2 3/4..{5 3/4 

3 -.2·6 -! , 4' , -1/15 1/2..[2 7/4v5 -1/4 

6,-!;3,- ~ 1/..{5 1/..[2 -1/2..{5 -1/2 

:3 _.2 
, 2 

!-tlo Z 1;!-tZ,ZZ 70 140 
9 - 1 1,- -;3,-4 1/..[2 -1/..[2 

3,- *;3,- f 1/..[2 l/h 
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TABLE IVF. (,,2~ ~ I JZ). 
t 1 2 2 

15',1 

3,1 

).Ij, Z I;).I2,Z2 15 

6,-!;:3, f -1/16 
3 - 1 

10,4;6,4 ,f5J6 

27,0 

).I1> Z I;).I2,Z2 84 
1 - 1 

6,-"4;6,4 1/v5 

10,~;8,-~ 2/v5 

8,0 

).Ij,Z 1;).I2,Z 2 15 45 

3 -~':3 £ , 4' , -l/2.f3 - 3/2-17 

6,- !;3,! - .f3/4 -1/4-17 
1 - 1 

6,-4;6,4 v5/4v'3 3v5/4-17 

10,t8,-~ v5/2,rz -ru/2ru 

1,0 

).I\,ZI;).I2,Z2 15 

3,- t;3, ~ -1/.f3 

6,-!;6,! 1273 

15,-1 

111,Z\;112,Z2 84 

3,-i;6,! ..) 2/5 

6,-*;8,-£ f375 

3,-1 

111,Z\;112,Z2 15 45 

1,-P,~ -1/2 - 3/2..[7 

3 5 3 1. ,-4'; ,4 -1/2 1/2..[7 

3,-t;6,~ 1/Y6 h/14 

6,-i;8,-i 1/.f3 -fi17 

6,- 2 

111,Z\;112,Z2 84 

1,-t;6,i v'375 
3,-t;8,- ~ 1275 

8,- 3 

256 

1 ,-*;8t-:~ 

84 

,f5J6 

1/16 

256 

2/v5 

-1/v5 

84 

1/16 

.f3/2,rz 

7/260 

1/2v5 

84 

../2/3 

1/.f3 

256 

v3!5 
-rzT5 

84 

1/v5 

1/v5 

2..) 2/15 

1/115 

256 

rzT5 
-v'375 
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15,1 

).Il,ZHI12,Z2 45 84 256 
1 - 5 6,-4;3, 4: -13/14 l/Vlo 2/6/35 

10,~;3,! -l/n ffl5 -3/135 

10,i;ii,! 3/114 h/10 12/35 

35,0 

10,0 

i!l,ZI;112,Z2 45 256 

6,-k;3,! -1/..[7 v6i7 
10,t8,-~ ..f"677 1/-17 

256 

.f3l7 
- .f3l7 

13/35 

-../2/35 

24,-1 

6,-!;8,-~ 

6,-1 

11\,ZI;112,Z2 45 256 

3,-f;3,! -M 1577 
6,-!;8,- ~- ..J577 .f277 

15,- 2 

256 

2../2/35 :l -2·8 -~ , 4' , 

-3../2/35 

h/35 

- ..)6/35 

3,-2 

11\,Z\;112,Z2 45 256 

1 ,-t;3,! -/377 2/..[7 

3,-*;8,-3 2/n fi17 
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10,£;6,1 

35,~ 

10,£;8,0 

10J 

10,~;8,O 

1,£ 

36 

6,-4,6,1 

24,-i 
I-Ij,Zj;1-I2,Z2 140" 224 

6,-i;8,0 1/v'6 rsJ6 
10,t6,-1 15/6 -1/16 

6,-i 

I-Ij,Zj;1-I2,Z2 140' 

6,-!;8,0 1 

15' ,-i 
I-Ij,Zj;1-I2,Z2 224 

6,-!;6,-1 1 

6 _1 
, 4 

I-Ij,Zj;1-I2,Z2 36 140' 224 

l,-.!l; 6,1 13110 1/.[2 1/15 

3, - f;8,0 .f215 0 -1375 

6.-!;6,1 13/10 -1/..[2 1/15 

10,--1 

6 -11 , 4 

224 

1,-*;6,-1 1 
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I-Ij,ZUI-l2,Z2 

6,-i;6,l 

10,~;S,o 

I-Ij,Zj;1-I2,Z2 
1 -6,-4;6,1 

10,tS,0 

10,4;6,-1 

I-Ij,Zj;1-I2,Z2 

3 -~·6 1 , 4' , 

6,-i;s,o 

10,t6,-1 

I-Ij,ZUl-l2,Z2 

3,-t;6,l 

6,-!;8,O 

I-Ij,Zj;1-I2,Z2 

3,-~;S,0 

6,-i;6,-1 

I-Ij,Zj;1-I2,Z2 

l,-*;S,o 

3,-J;6,-1 

10,£;6,1 

27,£ 

140' 

1/13 

1273 

8,~ 

36 

1/2 

.f3/2 

21,- i 
224 

- 1 15,-4 

36 

l/m 

V3/10 

h/5 

- 1 
3,- 4 

36 

1/..[2 

1/.[2 

15,-i 

140" 

1/..{3 

.f273 

3, - ~ 

s _.!l 
, 4 

140' 

1/12 
1/12 

140' 

1/.[2 

1/16 

-1/..{3 

140' 

1 

224 

fi73 
-1/..{3 

140" 

..{3/2 

-1/2 

224 

.f2l5 
- 2v 2/15 

1/115 

140' 

1Hz 
-1/.[2 

224 

12/3 

-1/..{3 

224 

1/V2 

-1/.[2 
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15,t 

27, ~. 

ILt>Z 1 ;IL2 ,Z 2 

3,- ;\:;3, 1 

6,-;\:;3,1 

8,£;1,0 

8,~;S,0 

S,i;8,0 

ILl,Zl;1L2,Z2 
- 1 3,-4;3,1 

s,i;s,o 

ILt>Zl;IL2,Z2 
- 1 
3,-4;S,0 

6,-;\:;S,0 
3 -8,4;3,-1 

ILl,Zl;1L2,Z2 

3,-i;3,1 

3,-1;8,0 

6,-!;1,0 

6,-!;S,0 

S ~'3 -1 

Jlt> Z l; IL2,ZZ 

3,-t;3,1 

3,-;\:;1,0 
- 1 3,-4;8,0 

6,-;\:;S,0 

S,t3,-1 

ILt>Zj;1l2,Z2 

3,-t;8,0 
1 -6,-4;3,-1 

8,t3,1 

10,~ 

ILt>Zj;/.!Z,Z2 20 

6,-;\:;3,1 -1/13 

8,i;s,o 12/3 

8,~ 

20~ 20~ 36 60 140" 

3"'3/4H6 - h/13 1/4-12 - 3/4-12 315/416 
-17/4178 -;12/13 3/4-12 3/4-12 -15/416 

1/269 l/m -1/2 1/2 -15/2'1'3 

-5/4178 2';2/13 3/412 -1/4-12 -1514.f6 

J65/4.f6 0 .f5; 4-12 15/4.[2 -1/4;16 

1,i 24,-;\: 

4 

- 2/-15 

1/V5 
- 1 15,-4 

36 60 

1/4 -,1"3/2.[2 

3/4 ,1"3/2-12 

- ,1"3/2v2 1/2 

20 

-1/3 

1/13 

- 2/3'1'3 

- V5/3,1"3 

.[2/3 

4 

1/-15 

- 2/3V5 

- ..f2/3-15 

-.f2T5 

21m 
15 -2 , 4 

60 

-1/..f2 

1/-12 

3,-t 

36 

1/15 

2/V5 

140" 

3/4 

1/4 

,1"3/2.[2 

6,-;\: 

20~ 

1l/6rn 

-m/413 

-7/3-139 

- 5-15/12139 

17/6H6 

20~ 

-1/m 

2//39 

7/2ffl 

- m/2.f6 

-3/2m 

140" 

1/..f2 

1/-12 

- 1 
3 - 4 , 

ILj,Zj;IL2,Z2 140" 

6,-;\:;S,0 1 

20; 60 

- 2/139 -1/2 

0 -13/4 

-1/3m 1/'1'3 

4-15/3m --15/4.;3 

2.[2/39 1/2.[2 

20; 36 

-2/m y' 3/10 

-1/3m -.f27i5 
4..f2/3m 11/4v15 

0 ,;3/4-15 

4/139 -1/2m 

6 -~ , 
.4 

ILt>Zj;IL2,Z2 36 

3,-~;8,0 13/2 
- 1 3,-4;3,-1 -1/2 

8,-i 

140" 

1273 
1/,1"3 

F 

D 

140" 

V5/3..f2 

-15/216 

ffl/3.f3 

1/6.f6 

V5/6 

140" 

1/16 

v273 
1/4'1'3 

1/4.;3 

1/2v2 

140" 

1/2 

'1'3/2 

1,-1 

Ilj,Zj; IL2,Z2 20 20~ 20; 140· lllj,Zj; IL2,Z2 I 140" I I ILj,Zl;IL2,Z2 I 20 J 
3 ,-t; 1,0 -2/3.;3 4/3-139 - 5/3m 4/3'1'3 13 -~'3 -1 I ' 4' , 

1 J I 3 -~':3 - 1 I - 1 ' 4' , I 
3,-~;8,0 - 2v'2/3,;3 17/3V78 4v2/3m - 1/3,f6 

3,-;i-;3,-1 1/13 11m 2/m 1/'1'3 
1 -

6,-4;3,-1 -v'2/3 -11/3126 212/39 1/3v'2 
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27,~ 

8,£;8,i 

8J 

I-Il,ZI;1-I2,Z2 64D 64F 

8,i;8,g 0 1 

8,i;8,i 1 0 

24,~ 

I-Il,Znll2,Z2 70 126 

6,-!;8,i 1/12 1/12 

8,i;6,-! -1/12 1/12 

1l1,Zl;1l2,Z2 50 
- 1 3 3,-4;8,4 -1/2 

6,-!;8,i 1/2 
3 - 1 8,4;3,-4 1/2 

8,i;6,-i 1/2 

1l1,Zl;1l2,Z2 10 
- 1 3 
3,-4;8,4 1/213 

6,-!;8,~ -,;5/213 
3 - 1 

8,4;3,-4 -1/213 

8,i;6,- ! ,;5/213 

1l1,Zl: 1l2,Z2 6 

3,-!:8J 1/2,;5 

6,-i;s, i - 3/2,;5 
3 - 1 8,4;3,-4 1/2V5 

8,£;6,-1 3/2,;5 

15' ,-~ 

6,-i;6,-i 

1l1,Zl:1l2,Z2 50 64D 

3,-t;8,i -1/v'6 h/10 

3,-i;6,-! -1/2 -1/,;5 

6,-i;3,-1 1/2 -1/,;5 

6,-i;6,-1 1/v'6 0 

8,i;3,-~ 1/v'6 h/10 
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F 

D 

- 3 10,2 

64D 

-1/2,;5 

3/2,;5 

-1/2,;5 

- 3/2V5 

6,t 
64D 

- ,;5/213 

-1/2,[3 

,;5/213 

1/2/3 

- 1 
3,2 

10 

1/2 

1/2 

-1/2 

1/2 

15,-~ 

64F 

-1/v'6 

0 

0 

- ";2/3 

1/v'6 

10J 

8,i;8,i 

1,~ 

64F 126 

1/2 3/2,;5 

1/2 1/2V5 

-1/2 3/2r5 

1/2 -1/2,;5 

64F 70 

1/213 ,;5/2,[3 

,;5/213 -1/2,[3 

1/2,[3 ,;5/213 

,;5/213 -1/213 

64D 64F 

1/2 3/2,;5 

-1/2 1/2,;5 

-1/2 3/2V5 

-1/2 -1/215 

70 126 

1/-/6 1/,;5 

-1/2 13/10 

1/2 13/10 

-1/v'6 0 

-1/v'6 1/,;5 
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Ilj,Zj;1l2,Z2 10 

3,-*;8,~ 1/Z 
- 1 - 1 
3,-4;3,-4 -l/Z.f2 

6,-!;6,- ! .J3/z..[2 

8,~;3'-f -1/2 

Ilj,Zj;1l2,Z2 6 10 

3,-!;8,~ h/10 -1/.J3 
- 1 1 3,-4;3,-4 l/M 0 
- 1 1 3,-4;6,-4 - ..[3/zl5 1/16 

1 - 1 6,-4;3,-4 - .[3/z..(5 -1/16 

8,~;3,-i ";3/10 1/.J3 

10 ,-~ 

Ilj,Zj;1l2,Z2 50 1Z6 

3,-t;6,-i -1/..[2 1/.f2 

6 -!'3 -.2 , t, 4 1/.f2 1/..[2 

IlIo Z j;1l2,Z2 64D 
5 - 1 

3'-'4;3,-4 1/215 

3,-~;6,-i - 3/2..(5 

3,-t;3,-i 1/215 

6,-i;3,-f 3/2..(5 

1,-~ 

Jlj ,ZUJl2'Z 2 10 70 
5 - 1 

3'-4;3,-4 -1/.f2 -1/v'Z 

:3,-t 3 ,-t }lv'Z -1/..[2 

:3 -.§ , 2 

3,-P,-~ 
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- 1 6,-2 

64D 

l/m 

-1/,[5 

- .f375 
-1/m 

3,-~ 

8, -~ 

64F 

-liZ 

-1/2 

1/2 

-1/2 

64F 

1/.f2 

0 

0 

1/.f2 

64D 

1/16 

0 

1/..[3 

-1/..[3 

-.1/16 

70 

1/2 

-1/2 

-1/2 

-112 

6,-~ 

1Z6 

..[3/z,[5 

3v3/2m 

-l/Zm 

- ..[3/z..(5 

64F 70 

1/1'30 -1/16 

fiT5 1/.f2 

21m -l/Z..[3 

z/m -1/z..[3 

1/v30 -1/16 

1Z6 

3/Z,[5 

l/Z,[5 

3/215 

-1/2,[5 

126 
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15,2 6,2 3,2 

24,1 15,1 

175 iJ.j,ZI;iJ.2,Z2 45 84 175 
l - 5 

6,-4;3'4 - .[3/212 1/2 ,[3/212 

8,i;3,i 114 - .[3/212 3/4 

8,£;6,i 3/4 .[3/212 1/4 

6,1 3,1 

iJ.J,ZI;iJ.?"Z, 20" 45 175 iLj,Z J ;iJ.2,Z2 151 152 45 84 

- 1 - 5 
3,-4;3'l -1/2 1/212 15/2.[2 3,-V3,i 0 -1/2 1/2 1/.[2 

S,!;3,! -1/212 3/4 -.f5/4 1 - 5 6,-4;3,- -1/,12 1/21G ..{3/212 -1/2..{3 

8,i;6,! 15/2.(2 15/4 1/4 8,~;3,;!: 1/2 - .[3/4 ..{3/4 -,[3/2ri 

8,i;6,! 1/2 5/4..{3 ..{3/4 1/216 

27,0 10 ,0 

iJ.j,Z[;iJ.2,Z2 84 175 iJ.l,Z t ;iJ.2,Z?, 45 175 

1 - 1 
6,-4;6,4 1/ .[2 1/12 3,-i;6,! 1/2 v'3/2 

8,£;8,- ~ -l/ri 1/v2 8,1;8,- i v'3/2 -1/2 

10,0 

iJ.:,ZI,iJ.2,Z, 45 175 

6,-!;3,! _1/2 13/2 

S,l;8,- ~ /3,/2 1i2 

8,0 

iJ.j, Z I;iJ.2,Z2 151 152 20' 45 45 84 175 

3,-t;3,i -1/4 - 5/8..{3 - ..{3/4 -3/8 3/8 15/4V3 m/8 
- 1 1 
3,-4;3,4 1/8 9/16V3 - V3/8 3/16 - 3/16 -7'15/8 3715/16 
- 1 1 
3,-4;6,4 3/8 V3/16 13/8 9/16 7/16 m/8 m/16 

6,- !;3,! -3/8 - V3/16 -..{3/8 7/16 9/16 - m/8 -ill/16 
1 - 1 6,-4;6,4 -15/8 715/16,[3 m/8 - 315/16 315/16 -1/8.[3 ,[3/16 

8,$;;8,- £ 3/416 -7/812 3/412 - ..{3/812 ..{3/812 - .[5/412 .[5/812 F 

8 ~;8,-~ m/412 15/8.(2 -15/4.[2 -m/8.[2 m/812 -1/4.[2 - 3/812 D 

1,0 24,-1 

iJ.j,Zj;iJ.2,ZZ 1 151 152 84 

5 - 5 
3'-4';3'4 3/2m -1/2 1/.[3 - 2/m 6,-!;8,-! 
- 1 1 
3,-4;3,4 - v'3/215 1/2 0 -13/5 

1 - 1 
6,-4;6,4 -h/10 - 1112 -1/16 -1/130 

8,~;8,-i .f275 0 -1/12 -1/m 

15,-1 6,-1 

iJ.l,ZI;iJ.2,Z2 45 84 175 iJ.j, Z I;iJ.2,Z2 20' 45 175 

3,-t;6,t ..{3/2.[2 1/2 ..{3/212 3,-i;3,t -1/2 -1/212 V5/2.[2 
- 1 3 3,- 4;8,-"4 -1/4 -V3/2.[2 3/4 - 1 3 

3,-4:;8,-4 1/2.[2 3/4 15/4 
6,-!;8,-! 3/4 - 13/2.[2 -1/4 6,-!;8,-i 15/2..[2 -15/4 1/4 
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3.-1 15,-2 

IJ.1. Z liIJ.2. Z 2 151 152 45 S4 

3.-~i3,! 0 1/2 1/2 -1/12 3'-£iS,-~ 
5 - 1 

3'-4 i6 ,4 -1/12 1/216 - v3/212 -1/2v3 
- 1 3 3,-4i S,4 1/2 - v3/4 - v3/4 -v3/212 

6 -!;S -~ -1/2 - 5/4v3 v3/4 -1/2.[6 
-. 

6,- 2 3,-2 

84 45 

3,-£;S,-4 -1 -1 

60 

8,t6,1 8,i;6,1 

27 ,~ 

36 IJ.lo Z 1 iIJ.2 ,Z 2 140' 140" 

8,i;6,1 6,-!i 6 ,1 1/13 f273 
8,tS,0 -.12/3 -1/13 

iO,~ 10,~ 

IJ.I,ZnIJ.2,Z2 60 140' I"IoZ1iI"2,Z2 140" 
;- 1-
3,-4i 6 ,1 .f2!5 .J3T5 S,~iS,O 1 

S,~i8,0 fi75 -fi/5 

8,~ 

I"I,ZjiIJ.2,Z2 20' 36 60 140" 
1 -

3,-4i 6 ,1 13/4.[2 3/4-./2 ../5/4-./2 3../5/416 
1 -6,-4i 6 ,l - 3.[5/416 ../5/4-./2 3/4-12 -13/4-./2 

8,~;8,0 3/4-12 -13/4-12 3../5/416 - .[5/4-12 F 

S ~. 8 0 ../5/4-./2 3../5/416 -13/4-12 -3/4-12 D 

1,~ 24,-! 

IJ.j,Zlil"2,Z2 4 36 IJ.lo Z 1 ;IJ.2'Z 2 140' 140" 

6,-!;6,1 --.13/5 --.1275 6,-!;S,O h/3 1/.1:3 

8,tS,0 fi/5 -V375 S,~;6,-1 1/v3 -fiT3 

i5,-! 
I-II,Z1il-l2,Z2 36 60 140' 140" 

5 -
3'-4;6,1 1/2 h/10 1/.[5 1/2 
- 1 3,-4;S,O - v3/4 1/2m h/5 -rs/4 

6.-!;8.0 rs/4 3/2m -l/m - 5/413 

S,~;6,-1 - .[3/212 3/215 -h/15 1/2i6 
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TABLE IVK. (Continued). 

6,-i 
- 1 3 -4 , 

I-Ij,Z!; 1-12,Z 2 20' 60 140· 1-1loZ !;l-Iz,Z 4: 20' 36 140· 

- 1 3,-4;8,0 -1/4 -.;5/4 - ..{5/2.[2 3,-J;6,1 -1/v5 -1/.[2 -1/2..{5 -1/2 

6,-i;8,O - .;5/4 3/4 -1/2.[2 - 1 3,-4;8,0 1/..{5 1/2.[2 - 3/4.[5 -3/4 

8,i;6,-1 ..{5/2.[2 1/2.[2 -1/2 6,-i;8,0 -1/..{5 1/2.[2 -7/4..{5 1/4 

8,i;6,-1 -f2!5 -1/2 - 3/2v'To 1/2,;2 

15' ,-i 15,-i 
140' 1-1lo Z nI-l2,Z2 60 140' 140· 

6,-i;6,-1 3,-~;8,O ../3/10 2../2/15 1/..[6 
- 1 3,-4;6,-1 -l/v'To .f2l5 -1/.[2 

6,-i;6,-1 ";3/5 -1/115 -1/.(3 

6,-i 3 -~ , 4 

1-1loZ !;1-I2,Z2 36 140" 1-I!,ZnI-l2,Z2 20' 140" 

3,-f;8,O -1/2 - .(3/2 3,-£;8,0 -1/.[2 -1/.(2 

6,-i;6,-1 - .[3/2 1/2 
- 1 3,-4;6,-1 1/.[2 -1/.[2 

10,-t 8,-£ 

140' 140" 

3,-~;6,-1 1 3 -~·6 -1 
t 4' t 

-1 

15,2 3,2 24,1 

6,1;3,1 6,1 ;3, 1 6,1;8,0 

15,1 
6,1 

1-I!,Z!;1-I2,Z2 45 175 1-I!,Z!;1-I2,Z2 20" 45 175 

6,1;8,0 - .(3/2 1/2 6,1;1,0 -1/3 -1/.[3 ..{5/3 

8,0;3,1 1/2 .(3/2 6,1;8,0 -..{5/3 ..{5/2.(3 1/6 

8,0;3,1 1/.(3 1/2 ..{5/2.(3 

3,1 27,0 

1-I!,Z!;1-I2,Z2 15 45 
6,1;8,0 -.[3/2 1/2 8,0;8,0 

8,0;3,1 1/2 .(3/2 

16,0 10,0 

1-I!,Z!;1-I2,Z2 45 175 1-1lo Z !;I-IZ,Z2 45 175 

6,1;3,-1 -1/..J2 1/.[2 6,-1;3,1 1/.[2 1/.[2 

8 0;8,0 1/..J2 11.[2 8,0;8,0 -1/..J2 1/..J2 
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TABLE IVL. (Continued). 

8,0 

ILt,Zt; 1L2,Z2 15 20' 45 45 175 

6,-1;3,1 3/412 -1/2 11412 3/412 ../5/412 

6,1;3,-1 3/412 1/2 - 3/412 -1/412 ../5/412 

8,0;1,0 -1/212 0 1/212 -1/212 ../5/212 

8,0; 8,0 0 1/12 1/2 1/2 0 F 

8,0;8,0 -../5/4 0 -../5/4 ../5/4 1/4 D 

1,0 24,-1 

15 175 

8,0;8,0 1 6,-1;8,0 1 

15,-1 6, -1 

ILj,Z I;1L2,Z2 45 175 ILj, Z I;1L2,Z2 20· 45 175 

6,-1;8,0 ..[3/2 1/2 6,-1;1,0 1/3 1/..[3 ../5/3 

8,0;3,-1 -1/2 ..[3/2 6,-1;8,0 -../5/3 ../5/2..[3 -1/6 

8,0;3,-1 -1/..[3 -1/2 ../5/213 

3,-1 15,-2 

ILI,Z I j1L2,Z 2 15 45 

6,-1;8,0 -1"3/2 1/2 6,-lj3,-1 

8,0;3,-1 -1/2 ..[3/2 

3,-2 

45 

6,-1;3,-1 1 

15' ,2 15,2 6,2 

6,1; 6,1 6,1;6,1 6,1;6,1 

24,1 15,1 

ILj,Z I;1L2,Z2 105 175 ILj, Z liIL2,Z2 84 175 

8,0;6,1 1/12 -1/12 8,Oj6,l -1/rz -l/rz 

6,1;8,0 1/12 l/rz 6,1;8,0 1/12 -1/12 

6,1 3,1 

ILt,Z I iIL2,Z 2 20· 175 ILj, Z t;1L2,Z2 15 84 

8,0;6,1 -1/rz 1/12 8,0;6,1 -1/12 -1/rz 

6,1;8,0 1/rz 1/12 6,1;8,0 1/rz -1/12 
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TABLE IVM. (Continued). 

27,0 10,0 

~1,ZI;~2,Z2 84 105 175 

6,-1;6,1 -1/.[3 1/,(6 -1/..[2 8,0;8,0 

8,0;8,0 1/.[3 fi73 0 

6,1;6,-1 -1/.[3 1/v'6 1/..[2 

10,0 

175 

1 

8,0 

~1,ZI;~2,Z2 15 20' 84 175 

6,-1;6,1 15/4 - .[3/2..[2 1/2..[2 .[3/4 

8,0;8,0 - .[3/2..[2 0 0 15/2.[2 

8,0;8,0 0 

6,1;6,-1 15/4 

1,0 

~I>Zl;~2,Z2 1 

6,-1;6,1 f37TO 
8,0;8,0 - v'275 
6,1;6,-1 ./3/10 

15,-1 

~I>Zl;~2,Z2 84 

6,-1;8,0 1/..[2 

8,0;6,-1 -1/..[2 

3,-1 

~t,ZI;~2,Z2 15 

6,-1;8,0 1/..[2 

8,0;6,-1 -1/..[2 

15,-2 

~I'Z t ;~2'Z 2 

6,-1;6,-1 

1/2 .[3/2 0 

.[3/2..[2 -1/2..[2 .[3/4 

24,-1 

15 84 ~1,ZI;~2,Z2 105 

1/..[2 -1/15 6,-1;8,0 1/..[2 

0 -.f375 8,0;6,-1 1/..[2 

-1/..[2 -1/15 

6,-1 

175 ~1 ,Zl ;~2,Z2 20' 

1/..[2 6,-1;8,0 -1/..[2 

1/..[2 8,0;6,-1 1/..[2 

15' , - 2 

84 

1/..[2 6,-1;6,-1 

1/..[2 

6,-2 

6,-1;6,-1 

TABLE V. Phase factors involved in the symmetry properties 
of SU(3) singlet factors. 

~ 1)1 1)2 

15 15 1 
15D 1 1 
15F -1 -1 
20" 1 1 
45 -1 1 
45 -1 1 
84 1 1 

20 15 20 -1 1 
20' 1 -1 

120 1 1 
140" -1 -1 

84 

1 

F 

D 

175 

-1/.[2 

1/..[2 

175 

11..[2 

1/..[2 
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TABLE V. (C ontinuecl) *Supported in part by the National Research Council of 
Canada. 

20 20 50 -1 1 
lFor a comprehensive review of SU(4) and SU(8) schemes of 

84" 1 1 
hadron physics, see: J. W. Moffat, "SU (4) and the New 

126 1 ] 
Hadrons," lectures at the McGill Summer School of Physics, 

140 -1 ] 
June 1975 [to appear in Proceedings of the McGill Summer 
School of Physics, June 1975 (to be published)]. 

20 20 1 -1 -1 2G. S. Abrams, invited talk at the SLAC Symposium on Elec-
15 -1 -1 tron-Photon Interactions, August, 1975 (to be published in 
84 -1 -1 Proceedings of the SLAC Symposium on Electron-Photon In-

300 1 1 teractions, August, 1975). 

20 20' 64 1 1 
3J. D. Bj!1irken and S. L. Glashow. Phys. Lett. 11, 255 (1964). 

70 -1 1 
4V. Rabl, G. Campbell Jr., and K.C. Wali, J. Math. Phys. 

126 -1 1 
16, 2494 (1975). 

140 1 1 
5D. Amati, H. Bacry, J. Nuyts, and J. Prentki, Nuovo 
Cimento 34, 1732 (1964). In this paper, the 20' * in the ex-

20 20' 15 1 -1 pansion of 20'& 15 should read 20', whereasthe 140" in 
45 -1 -1 20'*& 15 should read 140"*. - -
84 -1 iifuRef:-5, the SU(3) content of SU(4) representations up to 

256 1 84' are given. Note that the representation 60 contains a 15 

20 20' 36 1 1 
and a 6*, not a 15* and a 6, at Z=!. - -

7L. C. Biedenharn, J. Math. Phys. 4, 436 (1963); G. E. Baird 
140" -1 1 

andL.C. Biedenharn, 4,1449 (1963); 5,1723,1730 (1964). 
224 1 

BJ. W. Moffat, Phys. Rev. 140, BI681 (1965). 
20' 15 4 1 -1 9S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. 

20 -1 1 D2, 1285 (1970), 
20~ 1 1 lOJ. W. Moffat, Phys. Rev. D 12, 286, 288 (1975). 
20' -1 -1 l1S. Okubo, Phys. Rev. D 11, 3261 (1975). _2 

12J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963). 36 -1 1 
60 -1 1 

140" 1 

20' 20' 6 -1 -1 
10 1 1 
10 1 -1 
50 -1 1 
64D 1 1 
64F -1 -1 
70 -1 -1 

126 1 1 

20' 20' 1 1 
151 1 1 
152 1 1 
20' -1 -1 
45 -1 1 
45 -1 1 
84 -1 -1 

175 1 1 

20' 20' 4 -1 1 
20' 1 1 
36 1 -1 
60 -1 1 

140' 1 1 
140" -1 -1 

20' 15 15 -1 1 
20' 1 -1 
45 1 -1 
45 -1 -1 

175 1 1 

20" 20' 1 1 1 
15 -1 -1 
20" 1 1 
84 1 1 

105 1 1 
175 -1 -1 
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Green's functions for a face centered orthorhombic lattice * 
J. Hoshen and R. Kopelman 

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109 
(Received 14 October 1975) 

Diagonal and off-diagonal matrix elements of the Green's functions for a face centered orthorhombic 
lattice are presented in terms of integrals of complete elliptic integrals of the first and third kind. These 
Green's functions are also applicable to structures like that of the benzene crystal (space group D ~~, 
interchange symmetry D2)' 

I. INTRODUCTION 

Lattice Green's functions proved to be a powerful tool 
in the determination of impurity states in crystals. 
Considerable difficulties have been encountered in 
numerical calculations even for simple types of Green's 
function matrix elements. 1 Analytical expressions 
simplify the calculation of the Green's function matrix 
element, however these analytical expressions are only 
available for the Simplest type crystal energy disper
sion relations. Extensive use has been made of the com
plete elliptic integral of the first kind for the derivation 
of the diagonal matrix elements of the Green's function 
of square and rectangular lattices. 2,3 Green's function 
diagonal and off-diagonal matrix elements were given 
in terms of complete elliptic integrals of the first, 
second, and third kind by Hoshen and Jortner4 for 
square lattices for the energy dispersion relation 
2p cos (x) + 4q cos (x/2) cos(y/2), where p and q are in
termolecular interaction parameters. Diagonal matrix 
elements of Green's functions for the three-dimensional 
cubic lattice can also be expressed in terms of integrals 
of complete elliptic integrals of the first kind. 5 Expres
sions for the Green's functions of products of complete 
elliptic integrals are available for fcc and bcc lat-
tices. 3 Horiguchi, Yamazuki, and Morita6 derived 
Green's function expressions for orthorhombic lattices 
in terms of complete elliptic integrals of the first kind. 
In Sec. II of this paper diagonal and off-diagonal 
matrix elements of the Green's function for face cen
tered orthorhombic lattices will be presented. These 
matrix elements will be given in terms of integrals 
of complete elliptic integrals of the first and third kind. 
The expression derived in Sec. II will be applied in Sec. 
III for a numerical calculation of the Green's function 
matrix elements for some dispersion relations. 

It should be noted that the lattice Green's function 
for the face centered orthorhombic Green's functions 
derived in this paper can be applied to benzene crystals 
belonging to the D~~ space group which contains four 
molecules per unit cell. The application of these 
Green's functions for isotopic impurity clusters in the 
benzene crystal will be given elsewhere. 7 

II. DERIVATIONS OF THE GREEN'S FUNCTIONS 
MATRIX ELEMENTS 

In this section, expressions will be derived for the 
diagonal and three off-diagonal matrix elements of the 
Green's function for face centered orthorhombic crys
tals. The off-diagonal matrix elements correspond to 
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the three nearest face centered neighbor molecules. The 
energy dispersion relation for this system is 

h(x, y, z) = 4A cosx cosy + 4B cosy cosz + 4C cosz cosx, 

where 

A, B, C are the interaction parameters between a 
molecule at the origin and the three face centered 
molecules, respectively. 

(1) 

The four Green's function matrix elements are given 
by 

1 i~/2 i~ l~ dx 
go(E)=-43 dy dz E-h( ) , 

11" -~/2 -r -r x,y, z 
(2) 

1 1r
/

2 
• fr i~ exp(ix)dx 

gl(E)=-43 dyexp(zy) dz E-h( )' 
11" -r/2 ..... -r x,y,z 

(3) 

1 1~ 12 . i r 
. 1~ dx 

G2(E)=-43 dyexp(zy) dzexp(zz) E-h( )' 
11" -r/2 _~ .., x,y,z 

(4) 

1 i r 
/2 i~ . i~ dx exp(ix) 

g3(E) = -4 3 dy dz exp(zz) E _ h( ) . 
11" _~/2 -r -r x,y,z 

(5) 

It should be noted that the integration limits over the 
y variable can be changed. Thus the following expres
sion would hold for Eqs. (2)-(5): 

J r 12 J r J ~ J • J r J r (x 2 .r/2dy _.dz _.dxF(x,y,z)= _.dy _~dz _.dxF ,y,z), 

(6) 

where F(x, y, z) represents the integrands in Eq. (2)
(5). 

Equation (2)- (5) can be recast in the following form: 

2 £.12 i' go (E) = 2 dy dzlo(Y,z), 
11" 0 0 

(7) 

(8) 

2 (,/2 (' 
g2(E)=1I"2J

o 
dycosy Jo dzcoszlo(y,z), (9) 

210'/2 fr g3(E) = "2 dy dzcoszl1(y,z), 
11" 0 0 

(9') 
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TABLE I. Setting signs for A, B, and C. 

Setting signs for: 
Given B, C* A B C 

B>O, C> 0 A B C 
B> 0, C< 0 -A B -C 
B< 0, C> 0 -A -B C 
B<O, C< 0 A -B -C 

*The sign of A can be either positive or negative. 

where 

1 (r dx exp (inx) 
= 27T J.r E - 4(A cosx cosy + B cosy cosz + C cosx cosz) , 

(10) 

and n=O, 1. 

The integral In can be easily evaluated by a complex 
contour integration. When the density of state function 
for the energy dispersion Eq. (1) is nonzero, In(y, z) 
should be treated as a special case. In this case E is 
substituted by E - iE, where E is a small positive num
ber. E is set to zero when the limit of In( y, z) is taken. 

Substituting u = exp(ix) in Eq. (10) and integrating 
over the unit circle in the complex u plane we obtain 

. i f undu I (v z) = lIm -
n . , € ~+O 7T xu2 - 2 (E - iE - Il)U + X ' 

where 

X = 4(A cosy + C cosz), 

Il = 4B cosy cosz. 

In(y,z) has a real value for 

(E - 1l)2 ~ X2 

and is given by 

InCV,Z)=~lIm//::,.', 

where 

~ = 1 and um = u· for E> Il, 

~=-1 and um=u+ forE<Jl. 

/::,.' is given by 

/::,.' = lim[(E- iE - 1l)2 - X)]1!2. 
€ "+0 

u"' are represented by: 

. E - iE - Il ± /::,.' u' = 11m --=---"---
€ ~+o X 

(11) 

(12) 

(13) 

(14) 

(15) 

It should be noted that for the case represented by Eq. 
(12) it is immaterial whether the limits are taken before 
or after the integration of Eq. (11), since we deal with 
two poles, neither one of which is located on the unit 
circle for E - + O. 

The situation is different for 

(E- Jl)2 <: l. (16) 

The two roots u· lie on the unit circle for which E - + 0, 
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so that the limit is determined after the residues of 
Eq. (11) are calculated. The limiting process is de
scribed in Appendix A. The complex integral In( y, z) 
is given for this case by: 

(17) 

where ~=-1, and u' and /::,.' are given by Eqs. (15) 
and (14), respectively. Hence for the complex 1m ~ is 
independent of y and z. 

At this point it becomes necessary to assume certain 
relationships between the interaction parameters, A, 
B, and C. Without loss of generality we can assume 
I C I ;-. I B I > I A I. This can be done because the disper
sion relation (1) is symmetrical with respect to x, y, 
and z. In addition, we may assume that C > ° and B> 0. 
When B or C (or both) are negative they can be set 
positive according to Table 1. This setting leaves the 
Green's functions invariant. 

Equations (7)- (10) can be recast in the form 

21'/2 !o'~d7 g (E)=- dv ~ o 7T2 0 . 0 /::,.' , 

2 r'/2 r' (E )d 
gl (E) = 7T 2 J

o 
dy cosy J

o 
~ X-:, z 

2 1,/2 i' dz - - dv cosy --==---
7T2 0 . . 0 4(A cosy + C cosz) 

(18) 

2 {" 12 d (" HE - 4B cosy cosz) dz 
=~Jo :}'cosy J o 4(Acosy+Ccosz)/::,.' , 

(19) 

2 r' 12 r' ~ cosz dz 
g2(E) = 7T2 J

o 
dy cosy J

o 
- /::,.' , (20) 

(E)= 1. ['12 d' i' ~cosz(E-Il)dz 
g3 7T 2 :} X/::,.' o 0 

2[,/2 l' COSZ dz - - dy 
1T20 . o4(Acos}'+Ccosz) 

E A B 1 
= 4C go(E) - c gl(E) - C g2(E) - 4(. . (21) 

The Green's functions matrix elements, Eqs. (18)
(21) are real for the inequality Eq. (12) and complex for 
the inequality Eq. (16). g3(E) is given in terms of go(E), 
gl(E), and g2(E). Thus we shall limit the discussion only 
to those three Green's functions matrix elements. 

Substituting t=cosz in Eqs. (18)-(21), the gi(E) 
functions, i = 0,1,2, can be expressed in the form 

gi(E)=j~d2 Hi(:,')dy, 

where 

j
.l 

Hi(y)= .jui(t)dt 

and the lli(t) are given by 

2~ 
llo(t) = -2- , 

1T A 

(
t) _ 2B (co~2H (PI - t) 

Uj - 1T2C(p_t)/::,. , 

2 (cosy) st 
112 (t) = 1j'2 A ' 

J. Hoshen and R. Kopelman 

(22) 

(23) 

(24) 

(25) 

(26) 
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TABLE II. Boundaries for R. . 

A< 0 A<O 
C>B-A C<B-A 

Boundary Case (i) Case (ii) 

At 4(A-B-C) 4(A-B-C) 

~ -4C -4C 
As 4(B-C-A) 0 

A4 0 4(B-C-A) 
A5 -4AB/C -4AB/C 
A6 4(C-A-B) 4(C -A-B) 
A7 4C 4C 
As 4(A +B +C) 4(C+A+B) 

where 

p = - A cosy/C, P1 =E/4B cosy, 

~ = [16(C2 - B2 cos2y)(t - 1)(t + 1)(t - y)(t - 5)]1/2, (27) 

and y and 5 are 

_ E +4Acosy ( 
y - 4B cosy - 4C ' 28) 

. E- 4Acos'Y 
5= ~ 

4Bcosy +4C 

The following relationships hold for y and 5: When 
E>rthen5>y, whenE<rtheny>5, where 

(29) 

r=-4ABcos2y/C. (30) 

By utilizing Eqs. (28)- (30), it can be shown that for 
the real part of gj (El ~ is independent of z, and depends 
only on Y and is given by 

~ = sgn(E - r). (31) 

The integrals over y of Eq. (22) take different forms in 
each of the nine R j energy regions. The Rj regions for 
i= 2, 3, ... ,8 are defined by Ai > E>A i _i , Ri is defined 
by E < Ai and R 9 is defined by E > As. The Ai are the 
boundaries of these regions. There are four cases for 
these boundaries, and they are specified in Table II. 

The gi(E) can be represented in term of the integrals 
Vi ( Yi' Yz), where the Vj are defined by: 

0;Il( Y., Yi) = f2 H~ll (y) dy (32) 

where 

The index I denotes six energy regions 5 p specified in 
Table III, for which Hi ( y) assumes a different form for 
each of the six regions. Hence Eqs. (22) are given as 
follows: 

For the Rt Cases: (i), (ii), (iii), (iv) , 

gi(E) = 0;S)(O, 1T/2). 

For the Rz Cases: (i), (ii), (iii), (iv) , 

gj(E) = 0;5)(0, Yt) + Vj6)( Yt, 1T/2). 

For the R3 Cases: (i), (ii), (iii), (iv) , 

gj(E) = 0;5)(0, Y2) + 0;4)( Y2' 1T/2). 
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(33) 

(34) 

(35) 

A>O A>O 
C>B+A C<A+B 

Case (iii) Case (iv) 

4(A -B -C) 4(A -B - C) 
-4C -4C 

4(B-A - C) 4(B -A- C) 
-4AB/C -4AB/C 

O. 4(C -A-B> 
4(C -A-B) 0 

4C 4C 
4(C+A+B) 4(C+B+A) 

For the R4 Cases: (i), (iii), (iv) , 

gi(E) = 0;4) (0, 1T /2). 

For the R.4 Case: (ii), 

gj(E) = 0;5) (0, Y2) + 0;4) (yz, Y3) + 0;3) (Y3, 1T/2). 

For the R5 Cases: (iii) and (iv), 

gj(E) = V;3)(O, Y3) + 0;4)( Y3, 1T/2). 

For the R5 Cases: (i) and (ii), 

gj(E) = 0 4) (0, Y3) + 0 3) (Y3, 1T/2). 

For the Rs Cases: (i), (ii) , and (iii), 

gi(E) = 0;3)(0, 1T/2). 

For the R6 Case: (iv), 

gl(E) = Vj2)(0, Y4) + 0;3)( Y4, Y3) + 0;4) (Y3, 1T/2). 

For the R7 Cases: (i), (ii), (iii), and (iv), 

gj(E) = Vj2) (0, Y4) + 0;3) (Y4, 1T /2). 

For the R.s Cases: (i), (ii), (iii), (iv) , 

gj (E) = VP) (0, Y5) + 0;1) (Y5, 1T /2). 

For the R 9 Cases: (i), (ii), (iii), (iv) , 

gj(E) = Vj1)(0, 1T/2). 

The Yt> Y2' Y3, Y4, and Y5 are 

E+4C 
Yl =arcos 4A _ 4B ' 

E+4C 
Yz =arcos 4B _ 4A ' 

TABLE III. The 5i regions. 

(36a) 

(36b) 

(37a) 

(37b) 

(38a) 

(38b) 

(39) 

(40) 

(41) 

(42a) 

(42b) 

5 I regions Definition of energy 
regions* 

Relationships for y 
and 6 

5( E>a 

52 a>E>b 

53 b>E>r 

54 r>E>c 

55 c>E>d 

56 E<d 

6>1; -1>y 

1>6>-1>y 

1>6>y>-1 

1>y>6>-1 

y>1>6>-1 

y>1; -1>6 

*a = 4(A +B) cosy +4C; b= -4(A +B) cosy +4C; c=4(B -A) cosy 
-4C; d=4(A-B)cosy-4C; r=-4ABcos2y/C; a>b>r>c>d. 
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TABLE IV. The Y parameters of Eqs. (57) and (5S). 

51 regions Y Y 
Real part Imaginary part 

Range 1 Range 2 

1 1 -1 -1 
2 1 -6 -1 
3 -y _yt _ ot 

4 -6 -of -yf 
5 -6 -6 -1 
6 -1 -1 

t, 'see the footnotes to Table V. 

(43)-(45) and ul(t), Eqs. (24)-(26), for the imaginary 
part of the Green's functions: 

ui' (t) = - iU i (t). 

Let us define two auxiliary functions W(tlo t2) and 
W"(tlo t2): 

and 

Wi (tlo t2 ) = J t2 U l (t) dt 
t1 

W/,(t1, t2) = J/2 ul'(t) dt, 
1 

wheret2 >tlo t1 =-I,y,0, andt2 =y,0,1. The Hill(y) 
are given for each of the 51 regions in the form 

(47) 

(48) 

(49) 

(
_ EC)1/2 

Y3 = arc os 4AB ' (42c) H?)(Y) = Wi (-I, 1), (50) 

H?)(y)=Wi (-I,o)+iW"(o,I), (51) 
4C-E 

Y3=arcos 4A +4B ' (42d) HP)(y)=WI (y,o)+i(Wj'(-I,y)+Wj'(o,I)], (52) 

E-4C 
Y5=arcos 4A +4B (42e) 

It should be noted that V:j)(Yk'YJ) and ViS)(Yk'YJ) are 
real and have no imaginary component. 

In order to carry the integration of Eq. (23) for Hi(Y) 
[or rather H?)(y)], we have to separate the real and 
imaginary parts of Hi(y). This can be done by defining 
ul'(t) functions, where: 

uo' (t) = 1/fl" , (43) 

(44) 

(45) 

where fl" is given by 

fl" = [16(C2 - B2 cos2y)(t - l)(t + l)(t - y)(o - t)J1 /2 

=ifl (46) 

and fl was given by Eq. (27). 

The following relation holds between ul' (t), Eqs. 

Hi4)(y) = Wi(o, y) + i[Wi'(- 1, 0) + Wj'(y, 1)], 

Hi 5)(y) = Wi(o, 1) +iWj'(-I, 0), 

H!S)(y) = Wi (-I, 1). 

(53) 

(54) 

(55) 

The Wi and Wi' functions can be expressed in terms of 
complete elliptic integrals of the first and third kind, 8 

and are given by 

WQ(tlo t2) = ~dK(k), 

I ( ) _ B cos2v (P1 + Y) ( 2 2 
W1 tlo t2 - - ~d C(p + Y) T k, 04, 0'3), 

W:W1o t2)=- ~dcosyYT(k, ai, a~), 

where Wi represents either Wi or Wi'. 

(56) 

(57) 

(58) 

For Wi' = Wi, ~I = 1; and for Wi = Wi, ~I = 1 in the 
regions 510 52, 53, but ~1=-1 for the regions 54,55, 
5 S (see Table III). The parameter Y in Eqs. (57) and 
(58) is given in Table IV. K(k) in Eq. (56) denotes a 
complete elliptic integral of the first kind with a 
modulus k. The T functions in Eqs. (57) and (58) are 
given in the form8 

T(k, 0'2,132) = (1/ 0'2)[ (0'2 - f32)n (k, 0'2) + f32K(k)]. (59) 

TABLE V. Parameters for the imaginary parts of the Green's functions. 

51 region k'2 Range 0'2 I O'j 0'2 
3 

0'2 
4 

2 
V2 - Em (1- 6) (6 -1) (1 - 6)(£1 + 1) (1 - 0) (f!.1 + 1) 

Sq -2- 26 2(PI +6) 2(PI + 6) 

t y+l o (y+ 1) (f!.1 - 6) (y+1) (f!. - 6)(6 + 1) 

3 Em - V 
1 6 + 1 y(6 + 1) (PI - y) (6 + 1) (p-y)(y+l) 

Ep- W 
2 

1-6 y(1-0) (1:.1 - y) (1 - 6) (f!. - y) (1 - 6) 

l-y o(l-y) (PI - 6) (1 - y) (p -6)(1 -y) 

t 6+1 y(6 +1) (f!.1 - y) (6 + 1) (f!. - y) (6 + 1) 
1 y+1 o (y + 1) (PI - 6) (y+l) (p - O)(y+l) 

4 Ep- W 
Em - V 2 

l-y 6(1- y) (f!.1 - 6) (1 - y) (f!. - 0) (1 - y) 

1-6 y(l- 6) (PI-y)(1-6) (p -y)(1 - 0) 

5 
Ep- W 0+1 6 + 1 (0+1)(f!.!-1) (6 + 1) (f!. -1) 

Sq -2- ""2'6 2(Pj - 0) 2(p - 6) 

tn) parameters for Wj'(-I,y); (2) parameters for W;"(6,l) f(l) parameters for W;" (-1 ,0); (2) parameters for Wi' (y, 1) 
(see Eq. 52). (see Eq. 53). V, W, Em' 'P' q are defined in the footnote to 

Table VI. 
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TABLE VI. Parameters for the real part of the Green's functions. 

51 region f k2 (l!2 
I (l!~ (l!2 

3 
(l!2 

4 

4 ~ 2 2 2(el-Y) 2(e-Y) 
1 712 (Ep _ W)lh Ep- W 1-1' 1'-1 (1 - 1') (PI + 1) (1- y)(p+l) 

2 l.- (3.y2 
Ep- W 6 +1 1'(6 + 1) (6 +1) (el- 1') (6 +1)(e - 1') 

11"2 q 8q 6-1' 1'-6 (6 - Y)(PI + 1) (6 - y)(p+l) 

3 
4 ~ 6-1' 1'-6 (6 - y)(el + 1) (6 -1')(£ +1) 

71 2 (Ep - W)!/2 Ep- W 6 +1 1'(6+1) (6+1)(PI-Y) (6 +1)(p - 1') 

4 
4 ~ 1'-6 6-1' (1' - 6)(£1 + 1) (1'- 6)(e +1) 

11"2 (Em - V)1/ 2 V-Em 1'+1 6(1'+1) (y+l)(PI- 6) (1'+ 1) (p - 6) 

1/2 ~ 1-6 (6 -1) (1 - 6)(el + 1) (1-6)(e+ 1) 
5 

8q 
-2- -2- 2(PI- 6) 2(p -6) 

4 ~ 2 26 2(el- 6) 2(£-6) 
6 11"2 (Em - V)17 2 V - Em 1-6 6-1 (1 - 6) (PI + 1) (1- 6)(p + 1) 

V= 16(A + B)2 cos2y, W= 16 (A _B)2 cos2y, q=8ABcos2y+2CE, Em =(E-4C)2, Ep = (E + 4C)2. Em = (E - 4C)2 , Ep = (E +4C)2. 

The modulus k, and the parameters aL aL a~, and a~ 
and f are given for Wj in Table VI and for Wi' in Table 
V. II denotes a complete elliptic integral of the third 
kind. It should be noted that the modulus k of WI' is 
the complementary modulus k' of Wi' 

The following relationships hold for the parameters 
of II (k, (1'2) for WI and W2 (real case): 

0< (1'1 <k2, 

(I'~ > 1. 

(60) 

(61) 

This is known as the hyperbolic case for II, where II 
can be given in terms of the Jacobian zeta function Z. 

The relationships for the parameters of II (k, (1'2) for 
Wi' and Wf' are (imaginary case) 

k 2 < (1'1 < 1, 

(I'~ < O. 

(62) 

(63) 

This is known as the circular case for II, where II can 
be given in terms of the Heuman lambda function Ao. 

III. NUMERICAL CALCULATIONS 

The Green's function matrix elements go, gj, and g2 
can be evaluated utilizing the integration formulas Eqs. 
(33)- (41). g3(E) can be simply determined from Eq. 
(21), after go, gl, and g2 are evaluated. The integra
tions Eqs. (33)-(41) as defined in Eq. (32) can be de
termined numerically. There are no available analyti
cal expressions for these integrals. The integrand of 
Eq. (32), Hill includes both a real and an imaginary 
component for 1= 2, 3, 4,5 (see Table III). The Hill 
functions are defined by Eqs. (50)- (55) in terms of the 
Wi and Wi' functions. The Wi and WI! functions are given 
in terms of complete elliptic integrals of the first and 
third kind [see Eqs. (56)- (59)]. The various parameters 
of Eqs. (56)- (59) are displayed in Tables IV, V, and 
VI. The complete elliptic integrals of the third kind can 
be given in terms of Z or Ao functions. 8 The Z and Ao 
functions can be represented in terms of both complete 
elliptic integrals of the first and second kind, and in
complete elliptic integrals of the first and second kind. 
All these complete and incomplete elliptic integrals 
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can be calculated utilizing standard computer 
programs. 9 

The integrations in Eqs. (33)-(41) are somewhat 
complicated due to the existence of a logarithmic singu
larity in K(k) for k = 1. However, the singularity will be 
located at one of the integration limits of Eq. (32), when 
they occur. To avoid the singularities, a Gauss 
quadrature was applied for the numerical integrations 
of Eqs. (33)- (41). It was determined that the singulari
ties do not have a Significant effect on the calculations. 
This effect was explored by removing the singularity 
from the integrand of Eq. (32) for Wil' and Woo An 
example of such a process is given in Appendix B. It 
was found that the singularities could be safely ignored, 
since removal of the Singularities changed the final re
sults by 0.1 % at most. 

Results for the computation of the go(E), gl (E), g2(E), 
and g3(E) are given in Figs. 1 and 2 for the real and 
imaginary parts of the Green's function. The A, E, and 
C parameters in Fig. 1 are taken from Kopelman and 
Laufer,10 corresponding to case (iii) whereas the pa
rameters in Fig. 2 are arbitrary, and correspond to 
case (iv). 

A specific example for determining a Green's function 
matrix element is given in Appendix C. The complete 
program for calculating the Green's function matrix 
elements for the various A, E, and C interaction pa
rameters has been coded in FORTRAN, and is available 
upon request from the authors of this paper. 

APPENDIX A 

utilizing a binomial expansion of the radical 1::.' of 
Eq. (14), and returning the term linear in E we obtain 
for the complex case of Eq. (15) 

u' = HE - iE - )J. ± i(x2 
- (E - /l)2)1/2 (1 + xf~~; ":~)2)} 

= H[E - /l ± i(x2 
- (E - )J.)2)1/2] (1 ± (XL (~_ ~)}. 

(AI) 
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E 
2 

= w 
~o 

~ 

~ 

o.06~----------------' 

-008 
0.32 

0.16 

0. 
-6 18 30. 

[1 -0.0.2 

-0..10. 1----..J.....---'-----'-----1 
0..12 

[1 -0.0.4 

'" 0: 

-0.20. L-----,,,l,,----;I;---~,,.______:;_;' 
-20. 0. 20. 40. 

FIG. 1. Real and imaginary parts of the Green's functions 
matrix element gj (E). Bottom figures denote diagonal element 
go(E). Top figures denote off-diagonal elements 
gj(E): --- gl(E), -gz(E), ---g3(E) for interaction parameters 
A ~ O. 7 em-I, B = 0.9 em-I, C =4.1 em-I (see Eq. 1). 

To determine whether u· or u- lies within the unit circle 
the absolute value of the poles is taken: 

lu<I=IE-J.1.±ix2 -(E-J.1.)211 1 'f E I 
X (X2 - (E - J.1.)112 

=1·ll'f(xL (EE_J.1.)2)1/ 2 1. (A2) 

Since E is a positive number, I u· I < 0 and I u-I > O. 
Hence I u· I lies within the unit circle and contributes 
to the residue. 

It should be noted that the choice of E to be positive is 
required by the physical situation. The density of states 
function p(E) given by! 

1 
p(E) = - Imgo(E) 

11 
(A3) 

must be positive. If E is taken to be negative, u- would 
lie within the unit circle, and the p(E) would be 
negative. 

APPENDIX B 

The effect of the Singularities of the integral given by 
Eq. (32), can be best illustrated by treating an example 
of such an integraL Let us look at the imaginary part of 
Eq. (37a) for i = 0, 

1m go (E) = 1m Vri3)(0,Y3) + 1m VJ4)(Y3' 11/2) 

= JO
Y3 

f3K(k3) dy + J
y

: 12 f4K(k4) dv, (B1) 

f3 and f4 denote the f parameters for regions 53 and S 4, 
respectively. The values of f3 and f4 are given in Table 
V. For Y =Y3 we shall definef': 

(B2) 
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The moduli k3 and k4 are given by Table VI and for 
Y = Y3 both approach the value of one. 

Utilizing the limitl 

limK(k) =ln k
4
" 

k -1 

we obtain for Eq. (B1), 

Imgo(E) = JO
Y
3 (f3K(k3) - f'ln(- q)] dy 

(B3) 

J. • 12 [ ] J' • 1 Z I I + Y3 hK (k 4) - f'lnq dy + f' 0 In q dy, 

(B4) 

where q is given in Table VI. 

For the limits 

limk3 = limk4 = 1, (B5) 

the following expressions are obtained: 

By utilizing Eq. (B6), we may observe that the singu
larities have been removed from the first two integrals 
of Eq. (B4). The Singularity exists only for the integral 
J 1 = fO 12 In I q I dy. However, this integral has an analyti
cal expression 

= (7T/2)k 12CE 1+ Jo•
/2 1n11 +P2cos2y I, 

where pz is given by 

pz=4AB/CE. 

The integral 

Jz = J~'/zln 11 + pz cosZy I d::,' 

is given by 

(
1 + (1 + Pd /Z

) Jz =7T In 2 . 

(B7) 

(B8) 

(B9) 

0.0.2.------------------, C.~\6.------------------, 

,J -0.03 

] 

~ 

-O'o.81--__ ..J..... __ -'-__ ---" __ --j 
0..16 

0.0.8 

0. 
-10. 50. 

FIG. 2. Real and imaginary parts of the Green's function ma
trix elements !{i (E) [for notations see footnotes to Fig. 1 J for 
interaction parameters A c 2 em-I, B -, 3 em-I, and C ~ 4 em-I. 
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APPENDIXC 

The representation of the Green's function matrix 
elements q i (E) for the crystal structure and interac
tions, under consideration, are numerous and complex. 
These representations change with the relative mag
nitude of the interaction parameters A, B, and C, as 
well as the interactions signs, and energy value E. A 
specific example for determining the appropriate 
representation, using the prescription given above 
would be illustrative. 

We shall assume.A=2, B=3, C=4, and that we are 
looking for the imaginary part of q2(E), where E = - 10 
(see Fig. 2). In order to elucidate the form of Img2(E), 
we shall envoke the following steps: 

(a) utilizing Table I, we observe that the signs of 
A, B, and C remain unchanged, because B> 0, and 
C> O. 

(b) Inspecting Table II, we find that Case (iv) is 
applicable for our parameter set, and that Aa < E < A 4, 

implying E ER 4' 

(c) The Green's function matrix element Img2(E), 
which corresponds to Case (iv) and region R 4, is given 
by Eq. (36a). Hence, 

Img2(E) = 1m VJ4) (0,71/2) = Jo~ /2 ImH~4)(y) dy. (C1) 

(d) The superscript (4) in H~4) of Eq. (C1) denotes 
energy region 54, defined in Table III. ImH~4)(E) is 
expressed by the auxiliary function W:!' given by Eq. 
(53). Taking the imaginary part of Eq. (53), we obtain 
for Eq. (C1): 
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Irng2(E) = Jo'/2 W2'(-l, o)dy + Jo'/2 W:!'(y, l)dy, 

where y and 0 are given by Eqs. (28) and (29), 
respectively. 

(C2) 

(e) The W2' functions are given by Eq. (58) for which 
~, = 1. Thus, the Wf' functions given by Eq. (C2) can be 
represented in the form: 

W2' (tj, t 2) = f y ai2
[ (a~ - a~)l1 (k', an + aIK(k ')] cosy. (C3) 

The parameters f and (k ')2, for the region 54, are 
displayed in Tables VI and V, respectively. Similarly, 
the parameters a~ and a~ of Eq. (C3), for range (1) of 
region 54, corresponding to the function W"(-l, 0), 
and for range (2) to the function W"(l, y), are given in 
Table V. The Y parameters for ranges (1) and (2) of 
region 54 are given in Table IV. 
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Automorphisms of the Lie algebra of polynomials under 
Poisson bracket 

L. S. Wollenberg 

Department of Mathematics, Queen Elizabeth College, London W8 7AH, England 
(Received 12 December 1975) 

By constructing the one-parameter group of automorphisms generated by a typical derivation and 
generalizing certain special cases arising, we find all the automorphisms of the Lie algebra of polynomials 
under Poisson bracket. We introduce the notion of quasi-Hamiltonian equations, and investigate the effect 
of transformations (q,p)--+(a(q),a(p» (a an arbitrary automorphism) on such equations. By considering 
linear quasi-Hamiltonian equations with constant coefficients we obtain a conserved quantity for an 
arbitrary (2 X 2) linear system with constant coefficients. 

1. INTRODUCTION 

Let F denote the collection of all real polynomials in 
the 2n real variables (q,p)=(qUq2, ... ,qn'PUP2' 
... ,Pn), and define the Poisson bracket of elements 
j,gE F to be 

t ( oj og oj Og) 
{j,gh.,p) = aq. 'ap -ap 'aq. . 

J=1 J J J J 

This defines a Lie bracket on F and we shall also denote 
the corresponding Lie algebra by F. 

The restriction to polynomials in this work is for con
venience. Many of the results will, with suitable contin
uity hypotheses, extend to a wider class of functions, but 
are then more tedious to state. 

An automorphism oj F is a bijective linear map 
(\I : F - F which satisfies 

(1) 

Let autF denote the set of all automorphisms of F; it 
can be verified that autF is a group under composition. 
The automorphism property (1) does not imply that the 
transformation 

(q,p) - (Q, p) = (a(q), a(p)) (2) 

(using an obvious notation) is canonical. The situation is 
described by 

Lemma 1: Let a E autF. Then a(l) is a nonzero space 
constant [we use space constant to mean independent 
of (q, p), and cons tant to mean independent of (q, p) and 
all parameters] but the transformation (2) is canonical 
if and only if a(l) = 1. 

Prooj: Since a E autF is bijective, it has an inverse. 
Denote it by 0'-1. From (1) and linearity we find (here 
and in the sequel i and j run from 1 to n) 

a:. a(l) = {a(l) ,p,}(.,P) = a({l, a- 1(p, )h.,p») = a(O) = 0, 

a!i a(1) = {q p a(l )h.,p) = a( {a- 1(q i)' 1 }(.,P») = Q(O) = 0, 

implying a(l) is a space constant; 0'(1)* 0 now follows 
from the fact that a(O)= 0 and a is bijective. 

Now (1) and linearity tell us also that 

(3a) 
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(3b) 

{a(q i)' a(p)h.,p) = a({qppjh.,p») = a(oij) = a(l) 'Oii (3c) 

and these reduce to the canonical Poisson bracket rela
tions, which are the conditions for (2) to be canonical, 
if and only if a(l) = 1. This proves Lemma I. 

Remark: We show later (see Lemma 5) that a E autF 
is uniquely determined by its effect on qpPj" 

It is convenient at this point to state the following 
result: 

Lemma 2: Let a E autF. Then for all j,gE F 

{j,gh.,p) = 0'(1) 0 {j,gho,p) , (4) 

where, in the right-hand side, j and g are expressed in 
(Q,P) terms. 

Prooj: See the Appendix. 

Now if a 'c: autF is time-independent, then transforma

tion (2), even if not canonical, will nevertheless pre
serve the Hamiltonian form of equations. [The effect of 
(2) on (5a) and (5b) in the case when a is time-dependent 
is considered in Sec. 5B.] For suppose we have (here 
and in the sequel a dot denotes differentiation with re
spect to t) 

• ah(q,p,t) 
qi= api 

(5a) 

o (lh(q,p, t) (5b) 
Pi = - oqi 

for some (possibly time-dependent) h(q ,p, t) E F, and 
suppose a E autF is time- independent. Then 

~_ oPi =0 
at - at ' 

and thus 

Qi={Qphh.,p) 

=a(1)'{Qi,hho,p), using (4) 

= a(l). ilk(Q,P,t) =_c_[a(l) 'k(Q,P,t)] 
oPi oPi 

and Pi = {Pi' hh.,p) = a(l) • {Pi' h}(o,p) 

=a(l)' [-all(;:.,t) ] =-il~. [a(l)'k(Q,P,tl], . , 
where k(Q,P,t) is h(q,p,t) expressed in (Q,p) terms, 
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and we have used the fact that a(l) is a space constant. 
We have shown that Eqs. (5a) and (5b), when expressed 
in (Q,p) terms, are again of Hamiltonian form, the new 
Hamiltonian being a(1) ° h(q ,p, t) expressed in (Q, p) 
terms. 

When a(l) = 1 this reduces (cf., Lemma 1) to the 
familiar result for time-independent canonical trans
formations For this reason, as well as their algebraic 
interest, automorphisms merit study. A useful source 
of automorphisms is the following (cf., Helgasoni and 
Sagle and Walde2). Let D be a derivation of F, and for 
each real t define the map O!t by 

aJ(q,pl=exp(tD)f(q,P), allfEF, (6) 

where we interpret Cl'tf(q,P) to mean (at(j))(q,p); that 
is, we write aJor at(j), whichever is convenient. 
Then, if D does not depend explicitly on t, the set {at} 
forms, under composition, a one-parameter group of 
automorphisms of F, that is: each Cit E aut F; ao is the 
identity map on F; at' at = at +t , all real tu t2 • It is 

1 2 1 2 
called the one-parameter group of automorphisms gen-
erated by D. Furthermore, all one-parameter groups of 
automorphisms arise in this way. Now we have shown 
(Wollenberg3

) that every derivation D of F has the form 

D(j) = elf - ~ Pj r?) + {j, H}(a,p) all fE F (7) 
~ J =1 PJ 

for some space constant c and some HE F. [By rede
fining H in (7) we could bring (7) to a form symmetrical 
in the q's and p's, but it is more convenient as it 
stands.] 

In Sec. 3, we construct the one-parameter group of 
automorphisms generated by a typical derivation (7), 
and use certain special cases of these to motivate other 
examples of automorphisms. Section 2 contains results 
used in Sec. 3. In Sec. 4 ~ we prove that the examples 
of Sec. 3 exhaust all possibilities. In Sec. 5, we intro
duce the notion of quasi-Hamiltonian equations, and in
vestigate the effect of arbitrary (i. e., possibly time
dependent) transformations (2) on such equations. We 
consider linear quasi-Hamiltonian equations with con
stant coeffiCients, and obtain a conserved quantity for 
such equations. This yields, as a special case, a con
served quantity for an arbitrary (2 x 2) linear system 
with constant coefficients. 

2. SOME RESULTS ON VECTOR FIELDS 

The results in this section are used in Sec. 3. 

By a ('ector field we mean an operator X of form 

X=6 aj(q,p) 0_' +bj(q,p)'- , n ( 2 a ) 
;=1 ?qj 2pj 

where each aj , bj E F. 

It is easy to verify that for all f,gE F 
X(j' g) = (Xj) 0 j[ + f' (Xj[). 

(8) 

(9) 
This in turn implies (see Helgason, 1 Sagle and Walde2) 

that for all real t 
exp(tx)(j'g) = [exp(tX)j] ° [exp(tX)g] allf,gE F, 

(10) 
i. e., exp(tX) preserves multiplication. (We assume 
exp(tX)f is defined for all t, f. That is. we omit prob
lems of global integrability. ) 
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From now on in this section, and for most of the 
rest of the paper, we will assume, for convenience, 
that n= 1. The results extend immediately in an obvious
way to the case of general n. Let q =qi' P == Pi' 
qt=exp(tX)q, pt=exp(tX)p. Repeated application of (10), 
together with linearity, tells us that 

exp(tX)j(q ,p) =f[exp(tX)q ,exp(tX)p] =f(qpPt) all fE F. 

(11) 

Lemma 3: Let X be a vector field. Then X is form
invariant under the transformations (q,p) -[exp(tX)q, 
exp(tX)p]. 

Proof: It can be verified that X, when expressed in 
(quPt) terms, takes the form 

A a A iJ 
x= a(ql'p t ) '-" - + b(ql'p t ) '-a - . 

uqt 'P t 

In particular, 

~(q t ,pt ) = Xq t = X exp(tX)q 

= exp(tX) 'Xq since X and exp(tX) commute 

= exp(tX)a(q ,p) 

= a[exp(tX)q, exp(tX)p] using (11) 

=a(qupt)' 

Similarly, b(qppt)=b(qI'Pt )' and thus 

a iJ 
x = a(qppt) '-a - + b(qI'Pt) 0_" - . 

qt "Pt 
(12) 

Comparing (8) (with n= 1) and (12) we obtain the result. 
This proves Lemma 3. 

Remark: This result is no doubt well known, but the 
author cannot recall having seen an explicit proof 
before. 

From (12), we obtain 

qt = d~ [exp(tX)q ]=Xexp(tX)q =Xqt = a(qt ,Pt), (13a) 

, d 
Pt=dt [exp(tX)p]=Xexp(tX)p=Xpt=b(qt>Ptl. (13b) 

We have also 

qo=q and Po=p· (13c) 

Thus, by use of (11), the problem of finding the effect 
of exp(tX) is reduced to the (by no means trivial) prob-
1em of solving (13a)-(13c). It is worth emphasizing that 
(10)-(13a) and (13b) rely on the vector field property 
(9). 

3. CONSTRUCTION OF AUTOMORPHISMS 

A. One· parameter groups 

We now construct the one-parameter group {ai e ,H)} 
of automorphisms generated by a typical derivation (7) 
in which c, H do not depend explicitly on I. Write (7) as 

Df=cf+Xf= (el +X)f, (14) 

where 1 is the identity operator on F and X is the vector 
field 
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oH(q,p) ,~-[C +OH(q'P)J'~ 
op oq P oq op . 

Thus for all jE F 

aiC,Hlj(q ,ph exp(tD)J(q ,p) 

=exp[t(c1 +X)]j(q,p) 

where q-:,Pt are obtained by solving (18a)-(18c) with 
ilc(qt.pp t) = 0: i. e. , where qt = qo= q and Pt = Po= p. 
Thus, 

a;C,Olj(q,p)=exp(ct)jliz,pexp(-ct)] alljEF. (19) 

=exp(ct)'exp(IX)j(q,p) since 1 and X commute For example, from (17), 

=exp(cf)j(qt,Pt) cf. (11), (15) ilc(q,p,t)=exp(ct)H[q,pexp(-ct)]=C't~c,O)H(q,p), (20) 

where [cf. (13a)-(13c)] qt = exp(tX)q and Pt = exp(tX)p 
are obtained by solving 

, _ aH(qt,Pt) 
qt- OPt ' 

• _ aH(qpPt) 
Pt - -CPt - oqt ' 

qo=q and Po=p· 

Since we can write (16b) as 

and (16a) as 
, a 
qt exp( - Cl)-a - [exp(ct)H(qt ,Pt)] 

Pt 

(16a) 

(16b) 

(16c) 

(16b') 

(16a') 

choose new variables (tiI'Pt ) = [ql'P t exp(ct)) and let 

fic(ql';;;' t)= exp(ct)H(qI'Pt ) expressed in (qppt ) terms 

= exp(ct)H[qt ,Pt exp( - cO]. (17) 

Then (16a)' and (16b)' take the Hamiltonian form 

~ oHc(qt,Pt,t) 
qt= ?Pt 

.!. aiicCqt ,Pt> t) 
Pt = - oqt 

and (16c) gives 

qo=q and Po=p· 

Hence from (15) 

(1Sa) 

(18b) 

(18c) 

a;C,Hlj(q ,pl= exp(ct)j(qt ,Pt) = exp(ct)j[lft ;P t exp( - cO] 

all jE F, (15') 

where ql'Pt are obtained by solving (18a), (18b), (18c). 
In particular iic(qppptl= a;e,HlH(q,p), a relation which 
does not seem either obvious or useful. An alternative 
expression is given below, see (20'). 

Thus finding a;c,Hl is reduced to the problem of 
solving (18a)-(18c). The Hamiltonian form of (18a) and 
(lSb) tells us that the transformations (q,p) - Cql'p~) 
are canonical although, because of possible t dependence 
of i{ CqpPI' t), they do not necessarily form a one
parameter group. 

B. Examples and generalizations 

(a) When H = 0 the corresponding automorphisms are 
given [cf. (15')] by 
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i. e. , 

il
c
= a;c,OlH. (20') 

[We do not make use of (20').] 

(b) When c = 0 the corresponding automorphisms are 
given by 

(21) 

where qpp~ are obtained by solving (18a)-(18c) with 
ii/tit,pl't)=H(qpPt). In particular, it can be verified 
that 

For example if H(q ,p)= ~p2, then 

Hc(qt.pl'il=texp(ct)[Pt exp(-ct)]2=Hi exp(-ct). 

Thus (we omit the details), 
-

aiO,Hel j(q ,p) =j{q + c·1p[1_ exp(- ct),p}, c * 0, 

= j(q + tp, p), c = 0, 

and 
Q;c,Hlj(q,p) 

=exp(cl)j{q+c-1p[1-exp(-ct)],pexp(-cf)}, c*O, 

=j(q + tp,p), c = O • 

(c) The automorphisms (19) and (21) can be general
ized. For it can be verified that if .\ is an arbitrary 
nonzero space constant and y: (q,p)- «(j,p) is an 
arbitrary canonical transformation, then the maps 
a~ and ar , defined by 

O\J(q ,p) = A/(q ,pl.\) all jE F, 

a,j(q,p)=j(q,p) alljE F, 

are automorphisms. 

Maps of form (22) have been used by Souriau. 4 

The automorphisms (23) are well known. 

(22) 

(23) 

Composing (23) and (22) we obtain the automorphism 

Cl).,rj(q,p)=ar'ClJ(q,p)=A/(q,p!.\) alljEF. (24) 

4. ALL THE AUTOMORPHISMS 

In fact, every automorphism of F takes the form Q'~.r 

for some .\, Y. 

The proof (formulated for the case of general n) is in 
stages. First note that (Wollenberg,3 Lemma 2) the 
smallest Lie subalgebra of F containing the set S 
=k,qi,Qiql'q;,P;} is F itself. 
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Lemma 4: Let aEautF. If a(qj)=qj and a(pj)=Pj , 
then a{ti = fall fE F. 

Proof: From the automorphism condition (1) 

a:
j 

a(jk {ql' a(j)ha,p) = {a(qj), a(tiha,p) 

= a({qpfh.,p» 

=a(~) allfEF. 
oPi 

Similarly, 

_0 a(jk a ( Of) 
oqj \oqj 

allfE F. 

Thus, 

~a(q~)=O, 
uP j 

_0_ a(q2j )=20 .. qj, 
oqj lJ 

a(q~) = q~ + dj , 

where the d j are constants. Hence, from (1) 

a({q~ .fh.,p» = {a(q~), a(j)}<.,P) = M, a(J}}<.,PP 

i. e. , 

a (2 q j o;~) = 2qj' a~;; 

(25a) 

(25b) 

= 2qj a (o~) [using (25a)J all fE F. (26) 

Substituting f= qjp p q~pi' qjpp respectively, into (26) 
gives 

a(qi 'qj)=qj' a(qj)=q~, 

a(qj 'q~)=qj' a(q~)=q~, 

a(qj .qj) =qj' a(q)=qjqj" 

Similarly, we can show 

a(p~) = p~ . 

Now if a(j) =f and a(g)=g, then from (1) 

a( {j,g}<.,P» = {j,gha,p) 

and by linearity, for all constants c 1 , c2 

a(clf+ c2g) = c1a(j) + c2a(g) = cJ+ c2g· 

Thus a(j) = f for all f belonging to some Lie subalgebra 
of F containing S, that is, for all fE F. This proves 
Lemma 4. 

Remark: It can be proved, from (7) or directly from 
the derivation property, that if D is a derivation and 
D(qj)=D(Pj)=O, then D(j)=O allfE F. That is, a 
derivation is uniquely determined by its effect on q j ,Pj • 

However, we have not been able to show that this re
sult implies (or is implied by) Lemma 4. Note that the 
proof of Lemma 4 is similar to that of a previous re
sult of the author (see Wollenberg,3 Lemma 3) which 
led to (7). 

Lemma 5: Let a E aut F. Then a is uniquely deter
mined by a(qj) and a(pj)' 
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Proof: Suppose the automorphisms a 1 and a 2 satisfy 

a1(qj)= a 2(qj), 

a1(pj )=a2 (pj )· 

Then a = a 1 'a~l is an automorphism which satisfies 
a(qj)=qp a(Pj)=pj' Hence, by Lemma 4, a is the 
identity map on F. Thus a 1 = a 2 • This proves Lemma 5. 

Remark: The situation is very different if only a(l) 
is specified. For let A be an arbitrary nonzero space 
constant, then all ,the automorphisms (24) satisfy a(l) 
=A. In particular, 0(1) is constant does not imply 
that a is independent of all parameters (e. g. , time). 
We can now prove the main result of this section. 

Theorem 1: Every automorphism of F takes the form 
ax,r for some A, y. 

Proof: Let aEautF, and let A=a(l). Then since, by 
Lemma 1, A is a nonzero space constant, conditions 
(3a)-(3c) can be written 

{ a~qj), a~j)} ={a(pj),a(pj)ha,p)=O, 
<a,P) 

{ a~qj), (y'(Pj)} =Ojj 
<.,J» 

which tells us that the transformation 

y:(q,p)-Cfj,pl= (a;q) ,a(p~ 

is canonical. Hence [cf. (24)J, the map 

- - (a(q) a(p») 
aX,yj(q,p)=V(q,p/A)=a(l)f'Ct.(l) 'Ct.(1) allfE F 

(27) 

is an automorphism. Since clearly aX,y(qj) = a(qj) and 
aX,y(Pj ) = Pj , Theorem 1 now follows from Lemma 5. 

5. QUASI-HAMILTONIAN EQUATIONS 

A. Motivation and definition 

We return to consideration of the one-parameter 
group {a~e,H)} and examine the form (15') takes when 
expressed in (QpPt)=(at(q),at(p» terms and obtain 
the equations satisfied by QpPt . For convenience we 
replace Cl'ie,H) by at. 

Since Qt=at(q)=qtexp(ct) and Pt=CI't(p)=pp clearly 
(15') becomes 

atf(q ,p) = exp(ct)f[Qt exp( - ct) ,Pt exp(- ctn all fE F. 

(15") 

The equations satisfied by Qp P t can of course be ob
tained by expressing (18a), (18b) in (QpP t ) terms. 
A more interesting method is the following, which 
makes fuller use of the automorphism property: 

• d 
Qt = dt [exp(tD)q J = D exp(tD)q 

= exp(tD)Dq since D and exp(tD) commute 

= Cl't[cq + {q ,H}<.,p)J 

=cCt. t (q) + {at(q), at(H)h.,p) using linearity and (1) 
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Similarly, 

• d 
P t = dt [exp(tD) p] = exp(tD)Dp = <1 t [{p, H}(q,p)] 

where 

= {<1 t (p), <1 t (Hl}(q,p) 

= <1 t (l)' {P t , Cl't(H)hQt.pt) 

aHc(Qt, Ptt) 
oQt 

(28a) 

(28b) 

Hc(QI' PI' t) = <1 t(l)' <1/H) expressed in (Qp Pt) terms 

= exp(2et)H[ Qt exp(- et), P t exp(- et)] 

from (15") 

and we have used the fact that <1 t (l) is a space constant. 

Also, from (18c), 

Qo=q and Po=p. (28c) 

Note that by this method we derive (28a) and (28b) 
without any reference to (15") or (18a) and (18b), 
although we do use (15") to get a " practical" form for 
Hc(QpPpt). Equations (28a) and (28b) might thus be re
garded as more fundamental than (18a) and (18b). How
ever, (15') and (18a)-(18c) are more convenient than 
(15") and (28a)-(28c). 

Now since, as is well known, Eqs. (18a) and (18b) are 
derivable from the variational principle 

ot2 [p/it -ii/Cit ,Pt,t)]dt=0 allt2 >t1, (29) 
t1 

Eqs. (28a) and (28b), which are (18a) and (18b) 
expressed in (QpP t) terms, are also derivable from 
a variational principle. To find it we just express the 
integrand in (29) in (Qt'Pt ) terms. We have 

Hc(qppp t) = exp(et)H[ qt,pt exp(- etl] 

= exp(et)H[Qt exp(- et), P t exp(- etl] 

= exp( - ct)Hc(Qp PI' tlo 

Thus, 

[75; Cit - Hc(qpPI' t) 

d 
= P t dt [Qt exp( - et)]- exp( - et)Hc(Qp PI' t) 

= exp( - et){PtQt - [Hc(Qp PI' t) + ePtQt]}· 

Thus, (28a) and (28b) are derivable from 

o f2 exp(- et){PtQt - [Hc(QpPp t) + ePtQt]}dt 
t1 

(30) 

A similar computation shows that (16a) and (16b) are 
derivable from 
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These considerations motivate the following (formu
lated for the case of general n). 

Definition: The equations 

q;=]'vI;(q,p,t), (32a) 

p;=N;(q,p,t) (32b) 

are called quasi-Hamiltonian if they are derivable 
from a variational principle of the form 

n 

0f 2 /1(t)[(6p;qt)-H(q,p,t)]df=0 all t2 >t 1 , (33) 
t 1 i=l 

where /1(t) is a nonvanishing function of t alone and H 
EF. 

In such a case, (32a) and (32b) take the form 

• aH(q,p,t) 
ql= OJ); , (33a) 

• ~ aH(q,p,t) 
P;=-il P;- oq; , (33b) 

these being the Euler -Lagrange equations arising from 
(33). Thus (16a) and (16b) and (28a) and (28b) are quasi
Hamiltonian. We get the usual Hamiltonian form if and 
only if /1(t) is constant, but we can always reduce quasi
Hamiltonian equations to Hamiltonian form, for by 
writing the integrand in (33) as 

n 

(.0 (I1P;)q;) -I1H(q,p,t) 
i =1 

we see that the change to new variables. 

(q,}J) = (q, IlP) (34a) 

will reduce (33a) and (33b) to Hamiltonian form with 
Hamiltonian R (q, Jj, t) given by 

11 (q. p. t) = llH(q, P. f) expressed in (q, p) terms 

= IlH (If, Pill, f). 
(34b) 

(It is not the only possibility. See Sec. 5B.) For 
example, (16a) and (16b) reduce to (18a) and (18b) this 
way. However, as we see next, quasi-Hamiltonian equa
tions are just what we need for investigating the effect 
of time-dependent transformations (2) on equations of 
Hamiltonian form. 

B. How they transform 

We now return to the case n:= 1 and consider the 
effect of transformations (2), with Cl' an arbitrary (Le., 
possibly time-dependent) automorphsim, on quasi
Hamiltonian equations. By Theorem 1 every It E aut F 
is of form <1x,>, with A:= <1(1) and y: (q,p) -(q,p) 
canonical. Thus [also see (27)] we can write 

(Q, p):= (<1x,r(Q), Cl'x,r (p)) = (>.;J,P). 

Note that A, q, P may all depend explicitly on time, but 
that, neverthless, the corresponding transformation (2) 
is not much more general than a canonical transforma
tion. Now the properties of arbitrary canonical trans
formations are investigated by means of generating 
functions (see Goldstein5

, Chap. 8). A similar approach 
is adopted here. 

Suppose y has a generating function r (Its particular 
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form is irr~levant here). Thus for any H(q ,P., t) there is 
a function H(q,p, t) such that 

pdq -H(q ,p, t) dt= pdq -H(q,p, t) + dr. 

(For notational convenience we use differenti.;~s 
instead of total derivatives.) As is well known H(q,p,t) 
is given in each case by 

- - - ar 
H(q ,p, t) =H(q ,p, t) + 2t' 

Thus for any tJ.(t) (* 0) and H{q ,p, t) 

tJ.[pdq -H(q,P,t)dt]= tJ.pd(j - JJi1(q,p,t)dt+ tJ.dr 

= tJ.P dq - W/(q,p, t) dt - liT dt + d(tJ.r) 

=tJ.Pdq- ~/(q,p,t)+tJ.~~ +~r]dt+d(tJ.r) 

=J.lP'd(~1 - [tJ.H(q,p,t)+:t(tJ.r)] dt+d(tJ.r) 

=!!:....PdQ-J!.. [~ PQ+>"H(q'P,t)+~-ao (tJ.r~dt 
X A X J.l t ~ 

= tJ.'[PdQ -H'(Q,p, t) dt) + d(tJ.r), 

where 

and 

(35a) 

expressed in (Q,P) terms. (35b) 

(Notice that X, r, Y, tJ. ,N determine tJ.., ,H'. ) Thus, by 
the usual arguments of the calculus of variations, (33) 
implies 

i. e., Eqs. (33a) and (33b), when expressed in (Q,p) 
terms, are again quasi-Hamiltonian. 

Remark: We have tried, so far without success, to 
characterize the transformations (q ,p) _ (Q, p) which 
preserve the quasi-Hamiltonian form of equations. The 
difficulty seems to be that this condition does not, by 
itself, determine the transformations. 

Reduction to Hamiltonian form: To reduce (33a) 
and (33b) to Hamiltonian form, all we do is set 
X[= a(l)] = J.l; the canonical transformation y can be 
arbitrary (cL, remark after Lemma 5). Thus (34a) 
is just one of infinitely many possibilities. 

Effect on equations of Hamiltonian form: Suppose Eqs. 
(33a) and (33b) are in fact of Hamiltonian form, that is, 
suppose tJ.(t) is constant. Then, by (35a), the trans
formed equations are of Hamiltonian form if and only 
if A( = a (1)] is constant (as remarked previously, this 
does not imply that Ci is time-independent), in which 
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case the new Hamiltonian is, by (35b), 

H'(Q,p,tl= a(l)~(q'P,t) + ao~J 
expressed in (Q,p) terms. 

In particular, if Ci is time-in-independent, then 

and 

H(Q,p,t)= a(l) ·H(q,p,t) expressed in (Q,P) terms. 

This result was derived, by a different method, in Sec. 
1. When a(l) = 1 both reduce to familiar results for 
canonical transfor mations. 

C. Linear quasi-Hamiltonian equations with constant 
coefficients 

(This section is formulated for the case of general n). 
We now consider quasi-Hamiltonian equations (33a) 
and (33b) with tJ. = exp( - at) for some constant a and H 
time-independent and homogeneous quadratic in (q ,pl. 
Equations (33a) and (33b) will then be linear with con
stant coeffiCients, and it is convenient to express them 
in matrix terms. Before doing this we show that there 
exists for such equations a conserved quantity which is 
homogeneous quadratic in (q ,p). 

From (34a) and (34b), we know that the change to new 
variables 

(q,Pl = (q, tJ.p) = [q ,p exp( - at)] 

will reduce (33a) and (33b) to Hamiltonian form with 
Hamiltonian 

H(q,p, t) = tJ.H(q'pI tJ.) = exp(- at) H[~.J; exp(at») (36) 

[If a= 0, then (33a) and (33b) are already in Hamil
tonian form]. Now the explicit time dependence can be 
removed from (36), by means of the canonical transfor
mation (q,P) _ (q' ,f') generated by 

_ _ n_ 

rC(j ,j)', tl= ( 6 qlP;l • exp( - tat), 
1·1 

For this generates the transformation obtained (see 
Goldstein,5 Chap. 8) by solving 

-= or '" 1 ) 
Pi=~= =p;'exp(-zat, uq, 

= or:= 1 

q~=oft~ =ql'exp(-zat), 

i. e. , 

(~, ,P;) = [q exp(- tat), 

p exp(tat)] = [q exp(- tat),p exp(- ~at)] 

and the corresponding new Hamiltonian is given by 

=- '" or - -
H(q,p, t) + at expressed in (q' ,p') terms 

- - n --
= exp( - at) H[q' exp(~at), p' exp(~at)] - ~a 6 qjPi 

1=1 

=H(q' ,p') - tat q~; by homogeneity. 
1=1 
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Because the new Hamiltonian does not depend explicitly 
on time, it is conserved. In (q ,p) terms it becomes 

n 

W(q ,p, t) = [H(q ,p) - ~a 6 qiPil exp(- at) 
ld 

(again by homogeneity), which is of the form mentioned. 
If a=O it reduces, as expected, toH(q,pl. 

It is interesting, and does not seem at all obvious, 
that W(q ,p, t) can be described in terms of the coeffi
cient matrix arising when the linear equations (33a) 
and (33b) are expressed in matrix terms. To see this 
let u denote the (2nxl) column matrix (~), let J denote 
the (2n x 2n) block matrix ([0 [n) where 1 denotes the 

- nO' n 
(n x n) identity matrix, and let prime denote matrix 
transpose. 

Now Leung and Meyer" have given the following ele
gant characterization of linear Hamiltonian systems: 
a linear system Ii =Au is Hamiltonian [and the (2n x 2n) 
matrix A, whether constant or not, is called Hamil
tonian] if and only if JA is symmetric, in which case 
the Hamiltonian is - ~u'JAu. Thus Eqs. (33a) and (33b) 
can be written 

G)~(: ,:,)(;}sC) , 
where B is a (constant) Hamiltonian matrix and H(q ,p) 
= - J1l' JBu, i. e. , 

II =Cu 

with constant coefficient matrix 

C= (0 0) + B. 

\ 0 aIn 

In particular, 

1 1 (0 -211' JCII = - 2,U' 
-1 n 
n 

1) ~O 0) 1 n U - 2,U'JBll 
o 0 ain 

= - ~a ( 6 qlP i ) +H(q ,pl. 
i= 1 

(37) 

Also, by the Hamiltonian matrix property, (JB)' = B'J' 
= - B'J =JB, i. e. , JB'J = - J2B= B (this condition ap
pears in Laub and Meyer? as a possible definition of the 
Hamiltonian property), and so standard properties of 
trace give uS 

tr B = tr(JB' J) = tr(B'J2
) = tr( - B') 

== - tr B' = - tr B , 
i. e. , 

trB= 0, 
so that 

tre =na + trB= na 

and thus 

W(q ,p, t) = (-iu' JClI] exp[ - (l/n )(trC)t1 

which is of the form mentioned. If trC = 0, it reduces 
to H(q,p). 

This discussion is useful if linear quasi-Hamiltonian 
systems with constant coefficients abound, and can be 
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easily recognized. From previous considerations a lin
ear system (37) (whether C is constant or not) is quasi
Hamiltoni2Lll if and only if the matrix 

1 ~o 0) B= C -- (trC) 
n 0 [ 

n 

is Hamiltonian, that is (we omit the details) if and only 
if C satisfies 

C' J~, JC = (1/ n)(trC)J. (38) 

It is not: clear how plentiful the solutions to this are. 
Howeve·r, if n = 1, then every linear system (37) 
(whethE!r C is constant or not) is quasi-Hamiltonian, for 
it can be verified that (38) is satisfied by all (2 x 2) 
matrices C. (This can be explained by the fact that, 
when 11=1, Eqs. (32a) and (32b) take the form (33a) 
and (33b) if and only if 

ilJ'VI aN ~ 
-:;.-1+_1 = __ for some J.1.(t) * 0, 
c'ql 2Pl J.1. 

and this last condition is satisfied in every linear case 
it = Cu, whether C is constant or not.1 We can now 
deduce: 

Theorem 2: Let C be an arbitrary constant (2 x 2) 
matrix. Then the quantity 

W(q ,p, t) = [- ~u'JCu1 exp( - (trC)t] (39) 

is conserved along trajectories of the system u= Cu. 

The advantage of (39) is that it can be written down 
im.mediately and does not require any knowledge of 
tJ:'ajectories of the system, or of eigenvalues of C: but 
it is not yet clear if it will help us to decide the 
qualitative nature of trajectories of the system. If trC 
0== 0 the equations are of Hamiltonian form and W(q,p, t) 

gives the Hamiltonian. 
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APPENDIX 

Proof of Lemma 2: [The proof is modelled on Gold
stein,5 p. 254-255. Equation (Al) is Goldstein's 
equation 8.49.] We begin with the relation 

({u,Qkhq,p)' :~k +{u,Pkhq,p)'a~k) 
all U,VE F (Al) 

which is essentially a formula relating partial deriva
tives [i. e. , it does not depend on the canonicity or 
otherwise of transformation (2)]. 

putting It = Q i into (A1), we find that for all v E F 

n ( ilv av ) 
{Qp 1'h o•p) =6 {Qp QJ(q,P) a-Q + {Qi ,Pkhq,p) oP 

k=1 k k 

n av 
= k~ a(l)OlkaP

k 

using (3a) and (3c) 

a1' 
=a(1)o- . 

oPi 

L.S. Wollenberg 
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Similarly, putting It = PI into (AI) and using (3b) and 
(3c) we find that for all v E F 

{ OV 
PI, vhQ,p) = - a(l)' aQI . (A3) 

It is convenient to write these, for all IE F, as 

(A2') 

{f,PlhQ'p)~ a(l)· a~ . (A3') 

Now put It = I and V"" g into (Ai), and we obtain 

{J,g}(Q,P) =± ({J, Qk}(Q,P)' aOQg +{j,Pkh«,p) ao; ) 
kd k k 

= a(l) • t (_ ~ . .2.L + ~. Og) 
k=l 'iJPk <JQk oQk oPk 

using (A2') and (A3') 
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= a(l)· {J,ghQ,p) all l,gE F. 

This proves Lemma 2. 

Remark: In proving Lemma 2 we have used only the 
properties (3a)-(3c), and not the automorphism 
property (1). 
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On the linear connection and curvature in Newtonian 
mechanics 

R. Keskinen and M. Lehtinen 
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The trajectories of a scleronomic, holonomic particle motion in an otherwise general force field are 
autoparallel curves in a linear connected, symmetric, "almost" semimetric space. The Riemann-Christoffel 
curvature tensor and its concomitants belonging to the dynamical affinity are defined, and the physical 
meaning is discussed. 

1. INTRODUCTION 

Since the birth and success of Einstein's general 
theory of relativity there have been many attempts to 
geometricize classical mechanics. When a field of 
forces is given, the idea is to find such a geometric 
structure for the configuration space that the path de
fined by the time development of the system turns out 
to be a geodesic line. In the case of conservative 
systems the problem was solved by Douglas1 and 
Eisenhart,2 who showed that the structure of a 
Riemannian space is sufficient. The first one to con
sider more general fields of forces was Lichnerowicz, 3 

and he used a semi symmetric linear connection to de
fine the geodesics. Vujanovic4- 6 presented the use of a 
semimetric, semi symmetric connection. The geometri
zation of classical mechanics with the help of a linearly 
connected, pseudometric space of paths is given in two 
recent papers. Some curvature properties related with 
the connection and their physical implications are also 
considered in these works. 1,8 

In this paper we consider curvature properties in 
linearly connected semimetric and almost semimetric 
spaces of paths, whose geodesics are the trajectories 
of classical holonomic, scleronomic mechanical sys
tems. No restrictions are imposed on the nature of the 
forces, except those of smoothness. We restrict our 
consideration to one-particle systems, but the generali
zation to many-particle systems is straightforward. 

2. A GEODESIC FORM OF THE NEWTONIAN 
EQUATION OF MOTION 

The equation of motion in the coordinate system {q~} 
reads 

wheref~ is the force field and the dot (.) denotes the 
time derivative. The kinetic energy of the particle is 

it follows that the force field can be written as 

l =f" mg"vq~qV /2T, 

and the Newtonian equation of motion (1) is 

if' + ({/J-f~g"j2T]q";l = o. 

(1) 

(2) 

(3) 

(4) 

We see that this equation is identical with the geodesic 
equation 
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(5) 

if the coefficients of linear connection are defined by 

(6) 

where 

¢l=l/2T. (7) 

Because of the kinetic energy T in the denominator of 
1/ (7), and the very general nature of the forces fA, this 
symmetric connection is only defined along real trajec
tories, and so our space is a space of paths. 

To a connection we can add an anti symmetric tensor 
without changing the geodesiCS. So, the transformation 

(8) 

does not alter the geodesic lines, and gives the connec
tion r~v used by Vujanovic4

- 6 as a starting point. On 
the other hand, the projective transformation 

(9) 

gives a connection r~v, which makes our space a Weyl's 
semimetric, symmetric space. Moreover, this trans
formation conserves the geodesics, but time no longer 
remains a natural affine parameter. 9 

3. COVARIANT DERIVATIVE 

On the trajectory of the particle we can now define 
the covariant derivative belonging to the connection r:v of a tensor of any valence. The definition is the 
usual one, and we give only an example: 

'V'v PK\ = avPK\ + r~pp'\. + r~ppKP" - r~"pK\. (10) 

The covariant derivative of the metric tensor gM be
longing to the symmetric connection (6) is 

Thus, we could call the connection (6) almost semi
metric. The connection (8) is semimetric, for 

V "g~K = 2CP"g~K' 
It is easy to show that the Newtonian equation of 

motion (5) can be written in the forms 

q~V" ;/=0 
or 

Copyright © 1976 American Institute of Physics 

(11) 

(12) 

(13) 

(14) 
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The covariant differential of a contravariant (covari
ant) vector II (v,,) in a displacement along a trajectory 
from the point qV to the point qV + dqV is given by 

(15) 

and 

(16) 

where d means the ordinary differential. If a vector is 
displaced in such a way that ovi =0, the displacement 
is said to be parallel. 

When using the symmetric connection (6), the square 
of a vector v2 = if vjJ. changes in the parallel displace
ment dqjJ. along a trajectory as 

(17) 

In the usual vector notation this expression reads as 

(18) 

From the geodesic equation (5) we see that if the 
velocity vector qjJ. at a point is displaced parallelly 
along a trajectory to another point, we obtain the ve
locity vector belonging to that point. So, in the case 
where v is the velocity vector, Eq. (18) can be inter
preted as the power equation T=P (p=v·j=power). 
The connection (8) gives respectively 

d(if) = 2v2 ¢jJ. dq'" • (19) 

For the velocity this gives the same result as before, 
but in the different form dT=j·dr. 

It is worth noticing that some quantities, as for ex
ample the velocity q"', the kinetic energy T, the forces 
fll-, and the coefficients of the linear connection r~v, 
need not be globally defined as a function of position, 
but only along a trajectory qjJ. = qjJ. (t). Nevertheless, 
by considering a whole (continuous) family of trajec
tories simply covering a neighborhood of the original 
path q'" (t), we can extend the domain of definition of 
such quantities to make their partial derivatives mean
ingful. This is the case naturally occurring later, in 
the discussion of the stability of motion (Sec. 5). We 
can obtain the family of trajectories in various ways; 
we could, for example, take the trajectories starting 
from a fixed point to different directions with the same 
kinetic energy, or we could take the trajectories start
ing with equal kinetic energies from the points of a sur
face to the directions normal to that surface. We could 
let the initial kinetic energies vary for different trajec
tories, or, in the case of conservative systems, we 
could require the total energies to be equal for all 
trajectories, too. Since, however, the derivatives of 
velocity previously used were essentially directional 
derivatives in the direction of the trajectory, the 
formulas (13)-(19) are independent of the way, how
ever all this is done. In the further discussion this 
will no longer be true. 

4. CURVATURE 
Possessing a family of trajectories, we can now de

fine the curvature tensor on them as a function of posi
tion by 
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RvjJ."A," = 2o[v r~H. + 2r[vl al r~ lAo (20) 

It is well known that if TjJ.AK is an arbitrary tensor, 
then r:KA = r: A + T jJ. A It represents another connec tion, 
and the relation between the curvature tensors of 
these two connections is 

R'vjJ. x" =RVjJ.AK + 2V[vTjJ. n" + 2Sv/Tp/ 

- 2T[vIAIPT"'l/, (21) 

where V v means the covariant derivative belonging to 
the connection r: A, and the tensor SvjJ.P is defined by 

(22) 

After some calculation the symmetric connection (6) 
gives 

(23) 

where KvjJ.x" fs the curvature tensor belonging to the 
connection, whose components are the Christoffel sym
bols {:a} obtained frbm the metric tensor. By introduc
ing the tensor F v K as 

(24) 

we can write the curvature tensor of the connection (6) 
as 

By contracting the tensor Rv",x" with respect to the 
indices 11K, we get the so-called Ricci tensor 

(25) 

(26) 

Another concomitant of the curvature tensor is formed 
by contracting the indices AK. This antisymmetric 
tensor reads 

=Kv ",:+2g,,[jJ.Fvl
K 

=2g,,[jJ.Fvl" 

= 2F[vul' 

An easy calculation gives the identity 

(27) 

(28) 

and in the terms of the vector ¢jJ. the tensor VIl-X reads 

(29) 

If the force field is a gradient field, and if the total 
energies of the trajectories belonging to the family 
(cf. the discussion in the end of Sec. 3) are equal, we 
can prove that the tensor VjJ.A vanishes identicallyo In
deed, we can write 

E=T+U(l-), 

/jJ.=-o"U, 

¢jJ. = - ~(E - U)-l ojJ. U, 

0", T = 0 jJ. (E - U) = - oil- U = fjJ. , 

and Eqo (29) gives 

R. Keskinen and M. Lehtinen 

(30) 

(31) 

(32) 

(33) 
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V"'A = 0", (fA/2T) - oA(f",/2T) 

= (1/2T2)(fAo",T + To", fA -fJLo),T - Tod",) 

= (1/2T)(oAUo '" U - 0", UA U) 

=0. (34) 

It follows that in this case there is a scalar field CJ(q"') 
such that 

¢'" =:: - o",CJ. (35) 

Conversely, we can write 

2o[",f)'] = 2T[o",¢), - OA¢"'] + 2¢),o", T - 2¢", oAT 

=2TV",A+(1/T){fAo",T-f",oAT). (36) 

Thus provided that V",)' =:: 0, we see that the force field 
is a gradient field if and only if the vector fields f", and 
0", T are collinear. 

Transvecting the metric tensor g"'A onto the Ricci 
tensor R"'A' we obtain the scalar 

R =R",),g"'A. 

A straightforward calculation gives 

R=K+2F",'" 

or 

v "'¢'" = (R - K)/2. 

So, (R - K)/2 serves as a covariant source of the 
¢JL-field. 

(37) 

(38) 

(39) 

For the curvature tensor of the symmetric connection 
(6) it is easy to verify the usual identities9 

R(Y",)AK = 0, 

R[y",At =0, 

RY"OlK) = - 2V[yg",] (),¢K)' 

and the identity of Ricci-Bianchi 

V KRy",),K - 2V[v R",]A = O. 

(40) 

(41) 

(42) 

(43) 

The previous procedure can be applied to the curva
ture tensor of the semisymmetric connection (8), too, 
but the presence of the torsion part makes the calcula
tions more complicated. 

5. THE STABILITY OF MOTION 

The absolute derivative of a vector field v'" (qy(t)) 
along the trajectory is defined by 

Dv'" dqy JL 
Tt==TtVyv 
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(44) 

Accordingly, the second absolute derivative along a 
geodesic is given by 

D2 " _v _ _ "'" 2r"'.K.y 
d(2 - v + YK V q 

If we are given two adjacent trajectories q),(t) and 
qA(t) + E),(t) , where E is the infinitesimal isochronous 
displacement from the trajectory qA (t) to the trajec
tory qA(t) + EA(t) , the paths fulfill the equations 

and 

(45) 

(46) 

il + fA + r~y(qK + EK)W + EY][q'" + E"] == O. (47) 

By subtracting Eq. (46) from Eq. (47) and neglecting 
terms of second or higher order in EA and E\ we get 

fA + (opr~y) EPq"qY + 2r~)Yq" == o. (48) 

Writing the second absolute derivative of EA along the 
trajectory qA(t) and using Eq. (48), we obtain 

(49) 

This equation is analogous to the Levi-Civita10 equation 
for the geodesic deviation in a Riemannian space: The 
curvature tensor K y",/ of the Christoffel symbols is 
merely replaced by the curvature tensor RY"'K A based on 
the coefficients of the dynamic connection (6). 
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Tensor spherical harmonics and tensor multi poles. II. 
Minkowski space 
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The bases of tensor spherical harmonks and of tensor multi poles discussed in the preceding paper are 
generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor 
multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that 
the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multi poles of 
the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for 
application to the gravitational radilJ.tion. 

1. INTRODUCTION 

In the preceding paper, 1 hereafter called I, we have 
studied bases in the Hilbert spaces of complex tensor 
fields on the unit sphere .5 2, embedded in the three
dimensional Euclidean space [3. In this work, our pur
pose is to give a relativistic generalization of these 
bases for the Minkowski space denoted by /f,. We con
sider Hilbert spaces L ;[.5 2(e) 1 of rth-order Minkowski 
tensor fields on the unit sphere .5 2(e) embedded in the 
subspace [3(e) orthogonal to an arbitrary time like 4-
vector e. 

In these Hilbert spaces we build the tensor spherical 
harmonics and tensor multipole bases of the little group 
of the 4-vector e, by the method expounded in 1. These 
two sets are orthonormal in. L;[.5 2(e) 1 but only the tensor 
multipoles are pairwise ort.hogonal in/!/Zir. By studying 
the properties of the tensor multipoles under pure 
Lorentz transformations, we introduce the concept of 
irreducible tensor multipoles which transform according 
to an irreducible representation of such transformations. 

In Sec. 2, we define the spherical tetrads in the space 
lYi and from them we build the spherical basis tensors 
which transform accord.i.ng to an irreducible represen
tation under a rotation of the little group of e. 

Section 3 is devoted to rth-order tensor spherical 
harmonics. First the 'Bpherical harmonics on the unit 
sphere .5 2(e) are derived. Then they are coupled with 
the basis tensors through Clebsch-Gordan coefficients 
to obtain the tensor spherical harmonics on the same 
sphere. We also give some properties of the first- and 
second-order tensor spherical harmonics. 

In Sec. 4, the rtb-order tensor multipoles are deduced 
from the tensor spJnerical harmonics by the orthogonal 
transformation def'med in 1. Then the expansion of the 
tensor product!f/tg'r in a direct sum of two-dimensional 
subspaces invariant under a pure Lorentz transformation 
allows us to introduce the notion of irreducible tensor 
multipoles which form bases of these subspaces. In 
particular, we ",how that the usual 4-vector multipoles 
are themselves irreducible and we build explicitly the 
irreducible tensor multipoles of the second order. 

Finally, in two Appendices we give some results on 
the canonical decomposition of a Lorentz transformation 
and on repres.entations of pure Lorentz transformations. 
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Throughout the paper we use the summation convention 
for repeated Minkowski and magnetic indices but we al
ways write explicit summations over angular momentum 
indices. The scalar products in/fl, Irl!Z;/YI, andlr;!Z;r are 
denoted by a single dot (.), a double dot (;) and (:), re
spectively, e.g., a.b, t:T, t(:)T. For rotation ma
trices, Clebsch-Gordan coefficients (CG coefficients) 
an extensive bibliography is given in L 

2. TENSOR SPHERICAL BASES 

A. Spherical tetrads 

In the Minkowski space In, we use the metric tensor 
g, the components of which are gOO = _ gi i = 1 (i = 1, 2, 3), 
f!v=O for j..Lt-ll (j..L, 1l=0, 1, 2, 3) and f!v=g" =g"v' We 
also use the Levi-Civita tensor E"vpa which is the com
pletely antisymmetric tensor such that E 0123 = 1. With 
this tensor, the determinant of four 4-vectors is de
fined by E" vpaa" bV cP rf and it is denoted by {a, b, c, d}. 

A tetrad{e} is a set of four 4-vectors eo< (11'=0,1,2,3), 
forming a basis oUY!, satisfying the orthonormality, 
orientation, and closure relations 

eex. • cB =ga.B, 

{eo<, ee, ey, efi }=Eo<8rfi, 

(1) 

(2) 

(3) 

The spherical tetrad associated with {e} is the set of 
four 4-vectors ~ (j = 0, 11 = O;j = 1, II = -,0, +) defined by 

(4a) 

(4b) 

These 4-vectors are complex, they belong to the com
plexification /fl c our;. They satisfy the identity 

(5) 

where the symbol (*) means complex conjugation, and 
the following relations corresponding to Eqs. (1), (2), (3) 
above 

{
Ullll . co, em, em err == - ZEmnn 

Copyright © 1976 American Institute of Physics 

(6) 

(7) 
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1 
r; (- l)ie~*® e~=g, (8) 
J=O 

where Emnr is the spherical Levi-Civita tensor defined 
in Eq. (4) of I. 

The spherical components d" of a 4-vector a on the 
tetrad {e} are defined by 

1 

d.=(-I)Ja·e~, a=6d.e~*. (9) 
i=O 

Then the scalar product of two 4-vectors can be written 
with the spherical components 

(10) 

In the following, when no confusion is possible, we 
drop out the index of the unit timelike vector of tetrads, 
e. g., we write e for eo or e~. 

In the rest frame of e, the time component of e;, 
vanishes and e;, reduces to the vector spherical basis of 
the Euclidean space, i. e., e = (1,0), e;,= (0, en), see 
Sec. 2 of I. 

Let A be a Lorentz transformation of the restricted 
group. By using the canonical decomposition of A with 
respect to the 4-vector e, see Appendix AI, the trans
formation law of the spherical basis 4-vectors reads 

Ae~ = LA~'lY (RA)~', (11) 

where the pure Lorentz transformation LA and the rota
tion RA are defined in Eqs. (A2) and (A3). 

In the tetrad {e}, the parity operator P is defined by 

P=2e®e·-g· (12) 

and it acts on the spherical basis 4-vectors according 
to 

(13) 

B. Tensor spherical basis of rth order 

The tensor products e~® e~~® ···0 e~ form a basis of 
the space/YJ~r but under a rotation of the little group of e, 
they transform according to the product of representations 
d 1 (R)0 d 2 (R)® "'0 nir(R). The tensors of the spheri
cal basis are built by coupling the tensor products of 
4-vectors through CG coefficients such that they trans
form according to an irreducible representation of a 
rotation. 

The rth-order tensors are built by a recurrence re
lation from the (r - l)th-order tensors and the 4-vectors 
:)f the spherical tetrad 

For instance the second-order tensors are defined by 

(15) 

Often in the following, we shall denote for short these 
tensors by l,:;··· when no confusion is possible. 

Let us consider some of their properties. They satisfy 
the identity 
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r 

with K=r; ki' 
i=1 

and the orthonormality relation 

. (r )(r ) )r'" * r if"·· K (tm ) (. )(tm' ) = (- 1) n 0J'i! n 0k-k' 0mm" 
i=2 1 t i =1 1. 1 

(16) 

(17) 

Under a Lorentz; transformation A of the restricted 
group, these tensors become 

(18) 

and the parity opera. tor acts on them according to 
..iXo r i r '" _ ( )K j,'" 
y- tm - - 1 fr,' . (19) 

The spherical components T;,;'" of an arbitrary tensor 
T are defined by 

kl' "k, 

i2-· -iT 

(20a) 

(20b) 

The tensors obtained for the maximal couplings (i. e. , 
k i = 1 for i = 1 to rand jj ,= i for i = 2 to r) are simply 
denoted by t:;'. They are C'ompletely symmetric, ortho
gonal to e, and they have a vanishing trace2 

(t:;')" 1 ••• " i"'" Z "''', = (t:;,)" 1 ••• " / ••• " i"''', , 

t:;,· e= 0, 

t:;, :g=O. 

(21) 

(22) 

(23) 

Furthermore the integer o.rder representations of the 
rotation of the little group of the 4-vector e, can be ob
tained as 

(24) 

3. TENSOR SPHERICAL HARMONICS 

A. Spherical harmonics on 5 2 (e) 

Consider the unit sphere .s 2(e) orthogonal to the unit 
timelike 4-vector e. A point on .s 2(e) is characterized 
by a unit spacelike 4-vector u orthogonal to (' 

(25) 

Hence, the tensor fields on .s 2(e) can be parametrized 
by such a 4-vector u in a tetrad te} .. 

The scalar fields on .s 2(e) form the Hilbert space 
L ~l.s 2(e)] with the scalar product 

where the invariant measure dn(u) on _) 2(e) is 

dn(u) = 20(u' e)0(u2 + 1) duo 

The spherical harmonics of the 4-vector u in the 
tetrad {e}, Y~(u, {e}) = Y~(u), are obtaineo\ from the 
maximal coupling tensors t~ by 
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Y'( )=(_1)1[(2l+1)!!]1/2~ (')t' 
m /I 41Tl! 11. m' 

(28) 

They form an orthonormal basis in the space L ~LS 2(e)] 

(29) 

Let A be a Lorentz transformation of the restricted 
group, LA and RA the pure transformation and the rota
tion of the canonical decomposition of A with respect to 
e. Then, we have the identity 

(LAu) . (Ae~) = II' (RAe~) = It· e~,Dj(RA)n' n, (30) 

i. e., the spherical components of the 4-vector LAll on 
the tetrad A{ e} are also those of the 4-vector u on the 
tetrad RAl e}. These relations are generalized to the 
spherical harmonics according to 

Y~(LAU, A{e}) = Y~(u, RAle}) = Y~,(u, {e})D' (RA)m' m' 

(31) 

Under the parity operation, the transformation law of 
the spherical harmonics is 

Y~(Pll,{e})= Y~(lI,P{e})=(-l)IY~(u,le}). (32) 

In the frame where e = (1, 0) the time components of 
the 4-vectors u and e~ vanish and we have 

Y~(u, le}) = Y~(u, le}), (33) 

i. e., the spherical harmonics on .5 2(e) are identical to 
the usual spherical harmonics. For a brief review of 
their properties the reader is referred to Sec. 2 of I. 

B. Tensor spherical harmonics of rth order 

The Hilbert space L ~l.5 2(e)] of complex tensor fields 
on the sphere .5 2(e) has the scalar product 

if, g) = J f* (u) C )g(u) dn(u). (34) 

As for the tensor fields on 52, the rth-order tensor 
spherical harmonics (TSH) on 52(e) are built by coupling 
basis tensors and spherical harmonics through CG 
coefficients 

-) j "'k J I j "'k Y r r M(U) = (Zmjr/1 JM) Y~(u)t / r. (35) 

By construction these TSH form an orthonormal basis 
of the space elS 2(e)] 

(36) 

and they satisfy the identity 

(37) 

Let A be a Lorentz transformation of the restricted 
group. The TSH of the 4-vector LAu in the tetrad A{e} 
are related to those of the 4-vector u in the tetrad {e} by 

(38) 
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In the cases where A is a rotation R of the little group 
of e, or a pure Lorentz transformation L, the preceding 
relation becomes 

(39a) 

(39b) 

Under the parity operation, the transformation law 
of the TSH is 

(40) 

where the sign (- l)'+K is the parity of the TSH. 3 

By using 6j symbols and the notation g = (2x + 1)1/2, 
the scalar product inm~r of two TSH reads 

yljr· ... ~(u)\. ) y' 'j~. "ff: (u) = (n OJ ,j~) (n OH'\- 1t+1 '+J;+J' 
i=2 t t i=l t i) 

xJJ'lf'12(41T)-1/2/k{k 1 l'}(ZOl'OlkO) 
Jr J' J 

x (JMJ' M'I kn) Y;,(u). (41) 

This equation for J = J' and M = M' exhibits the geom
etric properties of the TSH in/n~r for fixed values of J 
and M. The symmetry of the CG coefficients implies that 
the TSH with different j i or k j , or with opposite parity 
are orthogonal inlh~r, but the TSH with the same ji' k i 
and parity are not. In Sec. 4, we shall define the tensor 
multipoles which are pairwise orthogonal inln~r. 

C. Tensor spherical harmonics of first and second order 

Let us consider the lower-order TSH. The first-order 
ones are the 4-vector spherical harmonics, defined by 

ylj~(u) = (lmjn I JM) y~(u)~. (42) 

For J and IvI fixed, the possible values of j and 1 are 
j= 0, 1 =J; j= 1, 1 =J - 1, J, J+ 1. Hence one has four 
4-vector spherical harmonics. The first one is propor
tional to the timelike 4-vector e, while the three others 
are combinations of spacelike 4-vectors. In the rest 
frame of e, they are 

yJ O~(u) =' y~(u) e = [Y~(u), 0], 

yl1~(u) = [0, yl~(u)l. 

(43a) 

(43b) 

The 16 tensors of the second-order spherical basis, 
defined in Eq. (15), satisfy the symmetry relation 

(44) 

All tensors with kl = k2 are either symmetric or anti
symmetric according to the value of j but the tensors 
with "1 *- k2 have no well-defined symmetry property. 
The trace of these tensors is 

tr(f"klk2) =' g : t~klk2 = k1 0k1k2 OJ oOnO' (45) 

All tensors but t~OO and t~l1 have a vanishing trace. 

The second-order TSH are built from these tensors 
by 

(46) 
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By construction they have the same symmetry and trace 
properties as the basis tensors, namely, 

[yljk1k2~(u)J'Lv= (_ 1)i+k1+k2[yljk2k1~(U)]V~, (47) 

(48) 

For J and M fixed one has 16 TSH according to the 
values of k1' k2' j and I. For k1=k2=j=0, the first one 
is proportional to the tensor product e0 e 

yJOOO~(u) = y~(u)e0 e. (49) 

For k1 * k2' j = 1, 1 = J - 1, J, J + 1, there are 6 TSH 
which are the tensor product of a 4-vector harmonics 
bye 

yll10~(U) = yll~(u)0 e, 

yll Ol~(u) = e0 yll~(U). 

(50a) 

(50b) 

For k1 = 1<2 = 1 we have 9 TSH which correspond to the 
9 TSH defined in the space L ~(y), see Sec. 3 of 1. 

4. TENSOR MUL TIPOLES 

A. Tensor multi poles of rth order 

As for the Euclidean space, the tensor multipoles 
(TM) of rth order are orthonormal linear combinations 
of TSH with the same i;, k; and parity. They are defined 
by the orthogonal transformation 

x~r"'k~~(U) = ,£M(j" J)~ I ylir"'kr~(u), 
I 

(51) 

where the matrix elements are CG coefficients and are 
defined in Eq. (66) of 1. 

By construction the TM form an orthonormal basis 
ofL ;[S 2(e)] 

(xir"'krJ Xi;".k;J') = (- I)K(n 6 ) (0 6 .. ) 
tL M, /.L' M' i=l kiki i=2 JiJi 

(52) 

and for fixed values of J and M, they are pairwise ortho
gonal in!i1~r 

x 6~ ~ 'E~r(41T)"1/2 '£ (j2/k) (JJlJ - JlI"O) 
k 

x (JMJMI 1m) Y;,(u) , (53) 

where the sign E~r is defined in Eq. (70) of 1. Another 
geometrical property of the TM is that their products 
by the 4-vectors e and u are either vanishing or pro
portional to a TM of (r- l)th order 

(54) 

xir"'krJ(u)'u- 6 (10,}' 0IJ'0)Xir-1'''kr-1J(u) (55a) o M - - krl r-l rOM , 

Xir. .. ·kr~(u) 'U = 'f 6kr1 (10jr_1 JlljrJl)X~~-1"'kr-1~(u), 

Jl ~. o. (55b) 

Under a Lorentz transformation fl., a rotation R of the 
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little group of e or a pure Lorentz transformation L, 
the TM transform like the TSH 

xir"'J( nJ l) =Xir"'J ( {})DJ(R)M' 
/.L M u, filer j.J. M' u, e AM, 

The TM have a well-defined parity3 1)~ 

X ir .. ·J(. PI}) - Xir· .. J( {}) ~ M 11, e - 1)"" M u, e 

with 1)" = (- I)J+K for Jl > 0, (- I)J+K+ir for Jl = 0 and 
- (- I)J+K for Jl < O. 

By analogy with electromagnetism, we can call 

(56b) 

(56c) 

(57) 

(i) magnetic the TM having parity (- I)J+1, namely, 

Xbr '" with (- I)K = (- l)ir+1 and x;C' (Jl '> 0) with (_ I)K 

= 'f 1; 

(ii) electric those having parity (- I)J, namely, 
X~roo, with (_I)K = (_ l)ir and X~~'" (Jl '> 0) with (_ I)K 

=±1. 

B. Notion of irreducible tensor multipoles 

Let L(K) be a pure Lorentz transformation in the 2-
plane (e, u), see Appendix A2. In this subsection of the 
Appendix, we show that the space /n~r can be reduced in 
a direct sum of two-dimensional subspaces which are 
invariant under such a transformation. We call "irre
ducible tensor multipoles" (ITM) tensor fields which 
have all the properties of the TM as well in the space 
U[S 2(e)] as in;?1~ r but which belong to these invariant 
subspaces and which transform according to a single 
representation B(nK) of L(K). Since these subspaces are 
two-dimensional, the ITM will be defined by pairs, each 
pair being a basis of the considered subspace. 

Consider the transformation law (56c) of the TM, it 
involves the tensor product of transformations L(K)0 r

• 

L(K) is represented by the direct sum of 2 x 2 matrices, 
B(K) of; I, then L(K):Z;r is represented by the tensor pro
duct of matrices [B(K)t:bI]:Z;,. which can be reduced in a 
direct sum of matrices B(nK) with 0"" II "" r, see Eq. 
(AI4). By definition each pair of ITM, denoted by 
X~ ~(ll, {e}) with i = 0, 1 and 0"" n "" r, transforms accord
ing to the representation B(nK), 

X~',~[L(K)U, L(K}{e}] = '£B(nK) i' iX~~(U, {e}). (58) 
i 

Note that the invariant ITM, i. e., those transforming 
according to B(O) = I can be defined individually. 

To keep all the properties of the TM {i. e., ortho
normality in L ;[S 2(e)], orthogonality in/)1~r, irreduci
bility under rotations and well-defined parity} the ITM 
must be linear orthonormal combinations of TM with 
the same J, M and parity. In the following, we show 
that the 4-vector multipoles Jf" ~(u) are themselves ir
reducible and we build the ITM of the second order by 
using their geometrical properties and more precisely 
their orientation with respect to the two 4-vectors e 
and 11. 
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C. Irreducible 4·vector multipoles 

The 4-vector multipoles are deduced from the 4-vector 
harmonics by the orthogonal transformation 

X~ ~(ll) = yJ O~(u), X~ ~(u) = yJl~(U), 

Two of these multipoles are proportional to the 4-vectors 
e or u while the two others are orthogonal to them 

X~~(u) = y~(u)e, (60) 

xt~(u) = y~(u)u, (61) 

(62) 

This last equation implies that the multipoles X; are 
invariant under the transformation L(K) in the 2,...plane 
(e, u) 

X;[L(K)U, L(K){e}] =X;(u, {e}). (63) 

But Eqs. (60) and (61) show that the multipoles X~ and 
xt transform according to B(K) and we can write their 
transformation law 

X~[L(K)U, L(K){ e} Jt = .0B(K){X~(U, {e});, (64) 
i 

with j = ° or 1 and summation over i = 0 and 1. The re
lations (63) and (64) mean that the X~ ~(u) are themselves 
irreducible for L(K). 

By using the parity relation (57) we obtain that the 
multipole X~ is magnetic and the three others X~, xt, 
and X: are electric. By setting the indices t for timelike 
(proportional to e), L for longitudinal (proportional to u), 
and T for transverse (perpendicular to e and u), we de
note the 4-vector multipoles by 

et~(u)=X~~(u), e
L 
~(u)=xt~(u), 

(65) 

In the rest frame of e, these 4-vector multipoles can 
be written in the form 

e t£ = [Y~(u), 0], e
L 
~ = [0, ~(u)u], 

e J - rO rVY~(u) ] In J - rO LY~(u) J 
T M - L' I J(J + 1)' L M - [' ,I J(J + 1) , 

(66) 

where the space components are the usual three-dimen
sional vector multipoles. 4 

D. Irreducible tensor multi poles of second order 

Consider the second-order TM X~klk2~(U). For fixed 
values of J~ 2 and M, we have 16 TM: for kl = l?2 = j 
= J.L = 0, the first one is proportional to e@ e 

X~oo~(u) = ~(u)e@ e. (67) 

For kl '* k2' j = 1, J.L = - 1, 0, + 1, there are 6 TM which 
are tensor products of a 4-vector multipole by e 

X 101J (u) = e@ Xl J (U) X llOJ (u) =Xl J (u)@ e J.L M jJ. M , f.L M IJ. M • (68) 

2089 J. Math. Phys., Vol. 17, No. 11, November 1976 

For kl=k2=1; j=O, 1, 2; J.L=-j, ... , +j; we have 9 
TM which correspond to the 9 TM defined in the space 
L~(F), see Sec. 3 of I. 

Equations (A14) and (AI5) show that we have to define 
1 pair of ITM transforming according to B(2K), 4 pairs 
according to B(K) and 6 invariant ITM. We denote them 
by ZX;,;,(u) or Z~ ~(u) with the following conventions: 

(i) the letter Z is!l1 or e for magnetic [parity (- IV+l] 
or electric lparity (- I)J], 

(ii) the upper index x is s or a for symmetric or 
antisymmetric, 

(iii) the lower index n= 1, 2 indicates the representa
tion B(nK) by which the ITM transform, 

(iv) the upper indices i == 0, 1 label each ITM in a pair, 

(v) for the invariant ITM, the two indices nand i are 
omitted, while the index T/ gives their geometrical prop
erties in/l1~2 :.s for scalar (proportional to /.f), T for 
transverse (orthogonal to e and u), L for longitudinal 
[with components in the 2-plane (e,u)]. 

Then the transformation law of the ITM under a trans
formation L(K) reads 

L(K)@rZxiJ == VB(nK)i ZxjJ 
nM L..J j nM' (69a) 

j 

L(K)@rZxJ == ZX J 
~M ~M' (69b) 

To build these ITM, we use the transformation laws 
of tensors given in Eqs. (A20), the geometrical prop
erties of the VM and their transformation laws. The 
2 ITM transforming according to B(2K) are electric, 
symmetric, and traceless 

l
es~~(u) = IFY~(u)[e@ e +u@ ul, 

(70) 
e~ ~(u) = IF Y~(u)[e@ u + u@ e]. 

We have already seen that 4 pairs of ITM transform 
according to B(K). These 8 ITM are also traceless and 
in each pair both ITM are either symmetric or anti
symmetric and they are either magnetic or electric 

lexn(u) =.f2 [e@ X:~(u) y, 

ct ~(u) = .f2[u0 X: ~(u) Jx, 

j !lixn(u)=.f2[e0X:~(u)]X, 
( ;n~~(u)=.f2[u0X:~(u)]X, 

(71) 

(72) 

where the symbol [ ]x means symmetric or antisymmet
ric part according to whether x is s or a. 

It remains to define the six invariant ITM. The only 
one with trace, called scalar, is proportional to the 
tensor g and symmetric 

(73) 

The two longitudinal invariant ITM are built by means 
of the 4-vectors e and u and of the tensor g. They are 
traceless and electric, one being symmetric and the 
other antisymmetric 
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TABLE 1. The orthogonal change of tensor functions from the 
tensor multipoles to the irreducible tensor multipoles. (The 
indices J and M and the u dependence are omitted.) 

{S 
L 

C 5 

X211 
-= +1' 

Xiii 
-::- +1' 

= xW. 

2 

1 
2 

__ 1_ -.fi 
~033 

/hsl =~p 

Iha: = X:P 

,13 
2" o ~11 

c/ ~(II) = Y~(ll)[e:g e - u:V u - if;], 

ct ~1(1I) = \!"F Y~(u)[ eQl: It- II¢<) e]. 

(74) 

(75) 

The three last ITM are transverse, i. e., orthogonal to 
the 4-vectors e and It. They are the traceless TM X;~l 
and X;)l1 themselves; X:~l is electric and symmetric, 
X~~l and X;Jll are magnetic, the first one being symmet
ric and the second one antisymmetric. 

Then, using the identities (38)-(47) of Ref. 5 one de
duces the change of tensor functions from the TM to the 
ITM. This change is given in Table 1. 

For application to the gravitational radiation, Zerilli6 

defined a set of symmetric multipoles on Vnc)QI: 2 which 
generalizes his set on ({~)'6 2, see Eqs. (48) of 1. The 
relations between the Zerilli's multipoles and our ITM 
are gathered in Table II. The Zerilli's multipoles have 
good transformation properties under rotation and form 
an orthonormal set in the Hilbert space. However, they 
are not pairwise orthogonal in vnj;;r and they do not 
transform according to an irreducible representation 
under a pure Lorentz transformation. Furthermore, 
three multipoles a5°1)' anI, lzJ.11 have nonvanishing trace 
while only the ITM C

S 
has a trace. 

5. CONCLUSION 

In this paper and in the preceding one (1) we have 
achieved a study of bases of tensor spherical harmonics 
and tensor multipoles for Euclidean space and 
Minkowski space, 

The tensor spherical harmonics are a direct generali-
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zation of the well known vector spherical harmonics. 
By noticing that the coefficients of these linear combi
nations are Clebsch-Gordan coefficients one easily gen
eralizes the concept of multipole basis to arbitrary ten
sor order. 

For Minkowski space the transformation properties 
of the tensor multipoles under Lorentz transformation 
lead to the notion of irreducible tensor multipoles which 
transform according to an irreducible representation 
of the group of pure Lorentz transformations in a 2-
plane. These irreducible tensor multipoles can be used 
to perform the multipole expansion of vertex functions 
in arbitrary frames. 5,7 The vertex functions depend on 
two independent momenta which define the 2-plane of 
the vertex. The coefficients of the expansion, called 
form factors, depend on the square of the momentum 
transfer and on the choice of a time like reference 4-
vector in the 2-plane. The basis of irreducible tensor 
multipoles yields form factors having very simple trans
formation laws in changes of reference 4-vector in this 
2-plane, i. e., pure Lorentz transformations. 

APPENDIX 

1. Canonical decomposition of a Lorentz transformation 

For a given timelike 4-vector, any Lorentz trans
formation can be split into the product of a pure Lorentz 
transformation and a rotation of the little group of this 
4-vector. 6 ,9 

Let e be a timelike unit 4-vector and A a Lorentz 
transformation of the restricted group. The canonical 
decomposition of A is 

(Al) 

where LA is the pure Lorentz transformation which maps 
e on Ae, 

(Ae + e):,s<; (Ae. + (,.) + 2Ac~, e' 
e . Ae + 1 ' 

(A2) 

and where R A is the rotation of the little group of (' de
fined by 

(A3) 

From the preceding expression one deduces the identi
ties 

LA -1 = 11.-1 (L A)-l A, (A4) 

TABLE II. Relation between the Zerilli's multipoles and the 
symmetric irreducible tensor multipoles. (The indices J, M, 
s and the u dependence are omitted.) 
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(A5) 

2. Representations of pure Lorentz transformations 

Consider the pure Lorentz transformation LA defined 
in (A2) and u, v, w three spacelike unit 4-vectors such 
that they form a tetrad with e and that u belongs to the 
2-plane (e, i\e). Then the transformation LA can be pa
rametrized by the argument K defined by 

coshK=e·i\e, sinhK=u·i\e, (A6) 

and L(K) 0::= LA reads 

L(K) = [coshK(e@ e . - u@ u .) - sinhK(e@ u' - u@ e .) J 

+ [- v@ v • - w@ w·J. (A7) 

This is a sum of two operators: the first one acts in 
the 2-plane (e, u) and the second one is the identity op
erator in the 2-plane (v, w). In the basis (e, u), the first 
operator is represented by the 2 x 2 symmetric matrix 

B(K) = (COShK sinhK\, (A8) 

sinhK COShK) 

while the identity operator is represented, in any basis, 
by the 2x2 identity matrix Io::=B(O). The matrix elements 
of B(K) are denoted by B(K); where the indices i and j 
take the values 0 and 1. If we write eO 0::= e and e1 

0::= u, the 
transformation law of these 4-vectors reads 

1 
L(K)eJ = 6 B(K){ei. (A9) 

i =0 

The matrix elements can be defined analytically by 

and they satisfy the identity 

B(- K)i j =(_l)i+JB(K)i
j

• (All) 

The hyperbolic trigonometry allows to reduce the ten
sor product of two B matrices in a sum of two other B 
matrices. Let m and n be two arbitrary integer num
bers, then we have 

B(mK)@ B(nK) :o:B[(m +n)KJEElB[(m - n)KJ, (A12) 

and the explicit relations between the matrix elements 
are 

(A13a) 

B[(m + n) KJi+k j +, = B(mK)i jB(nK)k, + B(mK)ijB(nK)k" 

(A13b) 

where the sum on the indices is defined modulus 2 and 
we use the notation i = 0, 1 if i = 1, O. 

A rth-order tensor transforms according to L(K)@r. 
That leads us to consider the matrix tensor product 
[B(K)EEl/}@r. This product can be reduced by means of 
Eq. (A12), one obtains 

r O:r (n) 

(B(K) EEl 1]@7 = EEl EEl B(nK), (A14) 
"=0 
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where O'r(n) is the multiplicity of the representation 
B(nK), 

(A15) 

Equation (A14) means that the tensor product!H@r can 
be reduced into the direct sum of 227

-
1 two-dimensional 

invariant subspaces and one verifies 

(A16) 
n=O 

Among the globally invariant subspaces, those which 
transform according to the representation B(OK) =1 are 
locally invariant. Hence the numbers NT of invariant 
tensors under the transformation L(K) is 

Nr = 20',(0) = C;r = (2r)1 l(rl)2 

for instance N1 = 2 and N2 = 6. 

(A17) 

As an example, consider the four second-order tensors 
made by the tensor products t ii = ei

@ ei (i, j = 0, 1). Un
der the transformation L(K) of the tetrad {e}, they trans
form according to 

(AlB) 

From the reduction formulas (A13) one easily builds 
the linear combinations of these tensors which are ir
reducible, namely, 

L(K)0 2(tij + tii) = EB(2K)Jk(tik + t7;;) , (A19a) 
k 

L(K)@2(tii _ tTI) = tii _ tii. (A19b) 

If one writes explicitly the matrix elements of B(K) and 
the tensors tij as functions of the 4-vectors e and u, one 
gets 

L(K)@2(e@ e + u@ u) = cosh2K(e@ e + u@ It) 

+ sinh2K(e@ u + u@ e), 

L(K)@2(e@ u + u@ e) = sinh2K(e@ e + u@ u) 

(A20a) 

+ cosh2K(e@ u +u@ e), 

L(K)2)2(e@ e - u@ u) = e@ e - u@ u, 

L(K)@2(e@ u - u@ e) = e@ u - u@ e. 

(A20b) 

(A20c) 

(A20d) 
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The isotropic multigroup transport equation is solved in LP, p> I, for both half range and full range 
problems, using resolvent integration techniques. The connection between these techniques and a spectral 
decomposition of the transport operator is indicated. 

I. INTRODUCTION 

Since Larsen and Habetler introduced a resolvent in
tegral technique to solve the one-dimensional one
speed isotropic linear transport equation, 1 this method 
has been extended to study a variety of problems. In 
particular, Bowden, Sancaktar, and Zweifel have ob
tained a solution of the multigroup problem in Hilbert 
space,2,3 and Larsen, Sancaktar, and Zweifel have ex
tended the one-group results to LP spaces. 4 

The purpose of this note is to indicate how these ideas 
can be combined to obtain a solution of the isotropic 
multigroup equation in LP, p> 1, for both half range and 
full range problems. The analysis demonstrates that 
the problem is reduced largely to estimating some re
levant operator norms in the solution space LP( 1 ) and in 
the spectral decomposition space LP(N, U). These esti
mates are carried out in Lemmas 2-8, and lead to the 
representation theorem, Theorem 9. 

We may point out that the elegant spectral analysis 
of Hangelbroek5 to this problem does not appear to af
ford an alternate approach, except for the two-group, 
since, with the exception noted, it is not possible to 
symmetrize the production matrix C and simultaneously 
maintain the scattering matrix ~ diagonal. In Theorem 
10 and the discussion preceding it, we indicate the con
nection between the von Neumann spectral theory util
ized by Hangelbroek and the resolution of the identity 
obtained from the resolvent integrations. 

Finally, Theorem 11 deals with the application of 
these results to half space theory. 

II. THE MUL TIGROUP PROBLEM 

Let us define the Banach space Xp(l) to be the space 
of (equivalence classes of) Lebesque measurable vector 
valued functions f from the real interval 1 = [ - 1, 1] to 
(J:" with norm 

We distinguish the subspace of constant vectors XZ to 
be functions f E Xp such that, for each i, 1 '" i '" n, fl (u) 
is independent of Il. In particular let 

(e(jl)j(Il)=OIJ 

for 1 "'j '" n. Then f E XZ precisely if there are con-
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stants a
J

, 1", j,,; n, such that 
n 

f= 6 aJe(j)' 
J =1 

On ~ an inner product may be defined: 
n 

[f,g]= 6fj gl , f,gEX~ 
i=l 

By a solution of the (full range) multigroup transport 
equation is meant a differentiable function 1/1: IR - Xp(I) 
satisfying 

a fl Ila- Iji(x) = - "2:,1ji(x) + C dll' Iji(x, Il') + q(x) 
x _1 

(1) 

where "2:, is an n Xn diagonal matrix with positive entries, 
C is any n x n matrix with nonnegative entries, Il in
dicates multiplication by the independent variable in 
Xp(l), 

(Ilf)/(Il)= Ilf/(Il), 

and q is the inhomogeneous source term, which we 
assume to be a Holder continuous function q: IR - Xp(l). 

We have written Iji(x, Il') for ¢(x) evaluated at Il', and 
in the remainder, we will omit the x dependence alto
gether, writing ¢( Il'). The solution of Eq. (1) is also 
understood to satisfy specified boundary conditions, 
typically /I ¢(x)llp - 0 as x - ± 00. 

The transport operator, or more correctly, the re
duced transport operator, K, is the bounded linear 
transformation on Xp(l) , 

Kf= "2:,-'llf + 'L,-'C("2:, - 2Ct' r: dlJ.' lJ.'f(IJ.') 

and its (unbounded) inverse is 
, 

(K- 1f)(Il) = (1/ 1l)"2:,f(Jl) - (1/ Il)C J rIll'f(Il'). 
-1 

We may assume, without loss of generality, that ~ II 
"" 1, 1", i '" n, and 11"2:,-111 = 1, and we shall do so. It is 
also necessary to make the noncriticality assumption'o 

det("2:, - 2C) "* O. 

The spectrum N of K as an operator on Xp(l) consists of 
the interval I, which is continuous spectrum, and of 
point spectrum Up(K). 

In Ref. 2, the Case transform F: f - A is derived for 
f Holder continuous, where 
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_l._{A -1(lJ)f 1 ds s(lJI _ SL;-I)-lf(s )l+ 
21TllJ _1 'f 

F(f)(lJ)= _{A- 1 (lJ) i>lSS(lJI-S6-1)_lf(S) }-, lJE I, (2a) 

~1'(~) [{II ds s(lJI -SL;-I)-~(S), a] ~"' lJE Up(K). 

(2b) 

Here the dispersion matrix A(z) = B + T(z) and its de
terminant n(z) = detA(z) are given by 

B=(6-2C)C-1L;, T(~)=-tdss(zI-S61>-\ (3) 
_1 

and the superscripts ± indicate boundary values ob
tained as z converges to Rez from above (below) the 
real axis. The vectors a and ~" are defined as follows. 
Since lJ E up(K) if and only if n(lJ) = 0, let us take ~" to 
satisfy 

(4) 

for each lJE Up(K). Then for any lJEup(K), we may' define 
a by 

a = j\)lJ)~" 

where (Ac)jj = cofijA differs from the notation in Ref. 
2 by a transpose. 

In the above it has been assumed that n'(lJ) does not 
vanish on the interval 1 = [ - 1,1] and that lJ E Up(K) has 
multiplicity one. We shall also assume that 

{
1(A(lJ)++ A(lJ)-), lJE I, 

r(lJ)= 1 - (K) , lJE up 
(5) 

does not vanish on I, although we do believe that all of 
these restrictions could be removed without difficulty 
(see, for example, the treatment of a similar problem 
in Ref. 6.) 

The importance of the Case transform lies in the 
completeness theorem and in its "spectral" behavior 
under K. Namely, if 

<I>(lJ, /1)= !p lJ(lJI - /1L;-I)-1 + Ll.(L;lJ - /1)L;- l r(lJ), lJE I, (6a) 

where Jf indicates a principal value integral is to be 
taken and 

Ll.(L;lJ - /1)jk = 0jkO(Uj lJ - /1), 

then 

f= J <I>(lJ, /1)A(lJ)du(lJ) 
N 

(6b) 

(7) 

for A = F(f) defined in Eqs. (2), and u(lJ) Lebesque mea
sure on I, U(lJ) = 1 for lJE ap(K). Moreover, 

Kf= IlJ<l>(lJ, /1)A(lJ)da(lJ). 
N 

Thus if we define F': A - f by 

F'(A)(J.ll= J <I>(lJ, J.l)A(lJ)da(lJ) 
N 
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for A Holder continuous, then Ref. 2 proves the fol
lowing theorem. 

Theorem 1: On H~lder continuous functions in Xp(I), 

F'F=I and F'lJF=K. 

III. OPERATOR BOUNDS 

Equation (2a) makes sense pointwise if j is Holder 
continuous; in order to extend F to all of Xp(l), we in
troduce the Banach splj.ce Xp(N) , where AE Xp(N) if A 
is Lebesque measurable on leN, A is proportional to 
~" at each lJE up(K) , and 

II Allp,r= t~ ~ IlJr(lJ)Aj(lJ) Ip dlJ riP < 00. 

In other words, 

For a proper extension to all of Xp(1) then, it is suf
ficient to prove: 

(i) F:Hp(l) - Xp(N) is a bounded, densely defined opera
tor, where 

HpW = {jE Xp(l)j Holder continuous on I}; 

(ii) F':Hp(N) - Xp(l) is bounded, where 

Hp(N) = {A E Xp(N) I j Holder continuous on I} 

(iii) RanF is dense in Xp(N). 

(8a) 

(8b) 

As there has been, in our opinion, some continuing 
confusion in the literature over these rather simple ob
servations, we reiterate the following. In the trans
formed space Xp(N), the transport operator K acts sim
ply as a multiplication operator. Hence transport prob
lems can be related to problems involving the much 
simpler, and necessarily normal, multiplication opera
tor. However, unless RanF is demonstrated to be 
dense in Xp(N) , there is no assurance that the solution 
of a transport problem solved in Xp(N) will be the image 
under F of a vector in Xp(l). This is, of course, equally 
true for the one group. If we cons ider, for example, the 
uniform slab problem, where the function A is given in 
Ref. 7 impliCitly as the solution of a Fredholm integral 
equation, then unless A is known to be contained in 
RanF, it cannot be assumed that F' A = ct> satisfies Fct> 
= A, and hence that it is the desired solution of the slab 
problem. Note also that the boundedness of F and its 
invertibility on a dense set is not sufficient to deduce 
the invertibility of F on Xp(l), unless it has been estab
lished that F' is bounded. 

The analysis of Ref. 2 hinges on the following theorem 
concerning Hilbert transforms, which we quote in a 
form useful for our purposes. B 

Lemma 2: Let f E Xp(I). Then the formula 
1 

g(/1)=!P s(J.lI-sL;-I)-~(s)ds 
_1 

defines almost everywhere a function g also belonging 
to Xp (I), and for a constant Mp depending only upon p 
and 1IL;-III, 
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Before proceeding to study F and F', we collect some 
important properties of the dispersion matrix. 

Lemma 3: 

(0 On Xp(l), 

A(II)+ -A(II)-= -27Till~2.le(II), (9a) 

where .le(V)IJ = 1 if i = j and 1111 ~ aj , zero other

otherwise. 

(ii) r(lI) is continuously differentiable on I/T, where 

T = {± Ojl}f=l> and r-1(1I) defines a bounded operator 

r-1 on Xp(I). 

(iii) On Xp(I), 

A _1(11)+ _ A _1(V)- = 21TiA -1(1I)+~2.le(II)A -1(V)-

is bounded, and on its range, r is bounded. 

(iv) On Xp(I), 

A-1(1I)+ _ A-1(v)-= _ 2A-1(1I)+r(II)A-1(1I)-

is bounded, and on its range, r is bounded. 

(9b) 

(9c) 

Proof: Let us consider
A 

(iii)-(iv) first. If T: I - o:n is 
a continuous map, then T:Xp(l) - Xn(l) given by 

(';/)(/1)= T(/1)f(/1) 

is bounded. Therefore, the problem reduces to studying 
A(II) on X~ for fixed II in a neighborhood of the 
"endpoints" T. 

Let b= + Ojl or - Ojl be such an endpoint, and let 
limv _ "* indicate a limit taken along 11= b ± iE with E - 0+. 
Suppose M: =Nb no:: with Nb a neighborhood of b such 
that N b contains no other endpoints, and 0:: = {z E 0: I 
± Imz ~ o}. Since limv _ u IIA(II)e l " = 00, we claim that 

lim A-l(v)e
l 

= O. 
II-b± 

For, 

where Pj: lP-MlP,el]e j is the projection onto el and 0'1(11) 
-±oo, and therefore, since A-1(v)(I-P1) is a continuous 
function of v for II E M~, we see that 

In other words, 

Sp{ej}c KerA-l(b):. (10) 

A(v): is invertible and, as we have noted, a continuous 
function of v E ~ on the subspace (I - PI)X~, Since X~ is 
finite dimensional, X~=RanA(b)+Sp{el}' and this along 
with Eq. (10) enables us to conclude that A-1(b) 
=lim

V
_

b
.A-1(v) on X~. Then, Eq. (10) and the continuity 

and boundedness of A(lIt+A(II)- on (I-P1)Xp for VE~ 
gives us directly that 
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is also a bounded operator on XI" 

Equation (9a) results immediately from the Plemelj 
formulas applied componentwise to Eq. (3). Since A(II)' 
is analytiC off the real axis and continuous on [ - 1,1 ]'\T, 
the integration along [ - 1,1] between neighboring end
points b1 , b2E T may be replaced by integration along the 
complex contours r(e)= ~(bl + b2 + (b 1 - b2 )e I8 ), eE [0, 
± 1T]. From this the continuity properties of r may be 
deduced. Finally, we note that the analYSis of A-1(1I) 
may also be applied to r(v) = A(v)+ + A(II)- to obtain the 
existence of r(II). 

Corollary 4: Hp(N) is dense in Xp(N). 

Lemma 5: FIHp(l) is bounded. 

Proof: Using the Plemelj formulas for v E I, 

vF(/J(v) =~ (1\"'(11)+ _ A _1(11)_) (, 1 ds s(vI _ S~-l)"lf(s) 
7Tt ).1 

+ i(A-1(lIr + A-l(v)_)~211(Vef)(v), (11) 

where Ve is defined by 

By applying r to both sides of the equation, and in
tegrating pth powers of each term over I, IIF(f)llp,r may 
be estimated by a sum of norms. Thus, the norm ob
tained from the first term on the right-hand side of the 
equation is bounded by IIr(A-lr~2.le(A-l)-IIMpllfllp, and 
the second by II~III-I/pllr(A-lrr(A-I)-11 Ilfllp since II.leil = 1 
and IIV e ll = II~-1_1 11'11. Then the contribution to IIF(f)llp, r 
of the continuous spectrum is 

(11.F(f) 11",r)a ~ {II r(A -1)'~2.le(A -1)-11 Mp 
j 

+ II ~ 11 1-1 II' II r(A -1)'r(A _1 til} II fill" 

If II E ap (K), then for q satisfying 1/ p + 1/ q = 1, the 
Holder inequality gives 

x 6 d 0'1 { f l I 
j -1 S V - sail - 1 

where 

d(v)= inf Iv-sl 
se:1 

and II II[qJ is the q-norm on a: n
, 

11~II[qJ=L~ 1~llq}l/q, Ee:o:n. 

Thus, the contribution to IIF(f)lIp,r of the point spectrum 
is 
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This completes the proof. 

Lemma 6: F'IHp(N) is bounded. 

Proof: We have from Eqs. (6) and (7): 

1J.(p-1 A)(IJ.) = IJ. f v(vI - 1J.~-l)"lA(v)dv + 1J.~_2(V C-lrA)(IJ.) 
-1 

+'6 ( ll() vEa (K) IJ. vI - IJ.~- )" A v • 
p 

The norm of the first term on the right-hand side is 
bounded by 

Mpll Allp"; Mpll r-lll II rAllp=Mpll r-lll IIAllp,r 
and the second term by 

The third term may be estimated by 

tE5K) Ef>1J.1 v2 - :VOjl I P! vAI(v)!p rIP 

( 
2 )l/P 1 

.,; p+l V~~:(K)Vd(V) !!A!!p,r' 
Lemma 7: Let Jp(N)={AEHp(N)lrAEHp(N)}. Then 

F:H/I}-Hp(N) and F':Jp(N)-Hp(J). 

(12) 

Proof: Since the Cauchy integral of a Holder con
tinuous function is Holder continuous on the interior of 
a Liapunov contour, 9 the only potential difficulty is at 
the boundary points ± 1\0"1' A typical term in the 
expression for F(/! is 

n 1 

'6 A-l(v)+ J ds(vI -S~;!)-lfk(s)ek' 
k=l _1 

which is explicitly Holder continous at V= 1\0"1 except 
possibly for k=i. From Eq. (10), however, 

A -1(1/ 0"1 )±el = O. 

The second part of the lemma may be proved immediate
ly from Eq. (12). 

Lemma 8: RanF is dense in Hp(N). 

Proof: We first wish to reduce the transformation F 
between Banach spaces Xp(N) and Xp(J) by subspaces 
corresponding to the eigenspace of K and appropriate 
topological supplements. Thus, let us define the bounded 
linear forms Pv on Hp(I) by 

PvC/! = [/ ds s(vI - S~-I)-If(s), aJ 
_1 

for VE O"p(K) , and let Hp(l) be the sub manifold 

Hp(l) = {jE Hp(l) 1 PvC/! = 0, v E O"p(K}}. 

If )'V is an eigenvector of K with eigenvalue v, then 

Pv()'v') = ovv.pv(a). 
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Since we may take 

)'v(lJ.) = (vI - ~-llJ.)"l~v, 

whence, applying the identity 

(vI - S~-ltl(V' 1- S ~-I)-I = [1/ (v' - v)J(v _ S~-I)-I (v' _ S~-I)-l 

for v'" v' and Eq. (3), the form on )'v' becomes 
(13) 

1 1 
= - -,--[A(v)~v" a] = - -,-- '6 (A(v)A~(v»I' = 0. 

V -v V -v I ' 

We have used the fact that AA~ = 0. 

If the projection P is defined on Xp(l) by 

Pf= '6 (Pv(f)/ Pv()'v»))'v 
vEap(K) 

and if P denotes the projection onto the subspace 

Xp(N)o= {A EXp(N) !A(v)= 0, VE I} 

of Xp(N) along the subspace 

Xp(N)l={AEXp(N)!A(v)=O, vE O"p(K)} 

then we assert that 

(I - P)F' = F'(I - p). 

To demonstrate this, we must compute the integrals 

for v E O"p(K) and A E Xp(N)1 n Hp(N). With the identity 
(13) and some rearrangements, these become 

J I dt(t _ V)-I(- ~-lA(v) + ~-lr(t))A(t) 
-I 

- / dt t(t - v)-I~-lr(t)A(t). 
_I 

(14) 

which vanishes by the same reasoning as for Eq. (14). 

Now we are prepared to determine RanF. Since F' :l3v 
-PXp(l), vEO"p(k), and F':Xp(N)l-(I-P)Xp(l), it is 
sufficient to prove F' is one-one on Xp(N)I' Thus, let 
us suppose F'(A)=O, AEXp(N)l nHp(N), and define 

(V c-IN)(z) = i~ v(vI - Z~-l)-IA(v) dv. 

Then the Plemelj formulas give 

I 

tv C-I(N" + N-)(z) =.p v(v - Z~-l)-IA(v) dv 
_1 

and 
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Substituting these expressions into 

f v(v - J-L2:-1 )-lA(v) dv + 2:-2(V r;-lr A)(J-L) = 0, 
-1 

we obtain 

1Ti2:2Vr;-1J-L(N' + N") + V r;-lr (N' - N-) = 0, 

which, with Eq. (9a) and appropriate cancellations, 
becomes 

V r;-l(A'N' - A-N-) = 0. 

Hence, by Liouville's Theorem applied to J(z) 
=i\(z)N(z), we conclude that A(v)=O. 

IV. SPECTRAL THEOREM 

Lemmas 5, 6, and 8, along with the results of Theo
rem 1, have as an immediate consequence the following 
theorem. 

Theorem 9: The transformation F: Xp(l) - Xp(N) is an 
invertible bounded linear transformation, and F-1 = F'. 
Moreover, 

FK=vF 

is valid on Xp(I). 

We emphasize that Theorem 9, by diagonalizing the 
bounded operator K, provides effectively a spectral 
representation of K. This is most transparent in Hilbert 
space language (p = 2), where a new inner product may 
be introduced on X 2 (1) , 

{j,g} = (Fj, Fg)2,r' 

Here, (',')2 ,r indicates the inner product on X 2 (N) de
rived from the norm 111I 2 ,r' Then if NClR, 

{Kj,g} = (FKj,Fg)p,r = (vFj,Fg)p,r= (Fj, vFg)p,r = {j,Kg} 

whence K is self-adjoint, and a similar calculation 
shows K is normal for N ca:. Furthermore, 

FK"= vFK"-l = 00 '= v"F, 

so, since N is necessarily compact, the map 

K: K" - v" 

extends to the Gelfand transformation from the C* al
gebra generated by K and K* to the algebra of continuous 
functions on N with uniform norm. (Actually, by 
Mergelyan's Theorem, C* algebra is generated by K 
alone, even when K is not self -adjoint. 11) 

These remarks can equally well be expressed in 
terms of a spectral resolution for K. Recalling that the 
Dunford integral was used to obtain 

f=-2
1

. J dZR(z,K)f=lim-2
1

. f1d
J-L{R(J-L-iE,K) 

1T1 r e-O' 1T1 -1 

-R(Il+iE,K)}f+~ 6 (dzR(z,K)f 
1T1 vEo (Kl Jr p v 

= i da(v)4>(J-L, v)F(f), 

one expects that 

(E([-1,w])f(J-L)=f~ dv4>(J-L,v)F(f), wEI, (15a) 
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(15b) 

defines a resolution of the idenity for the normal opera
tor K. This is indeed the case, the essential feature 
being the fact that in X2 K is similar to the sum of a 
self -adjoint operator and a jinite dimensional normal 
operator on the span of {Y) VE a:\lR}. 

To see this, we recall that the spectral projections 
can be obtained by the formula12 

J
b+6 

E«(a b))=lim lim _1_ (R(J-L-Ei,T)-R(J-L+Ei,T))dJ-L 
, • 2' a'6 

6-0 e-o' 1T1 (16) 

in the strong operator topology, for T any bounded self
adjoint operator on a Hilbert space. It is not difficult to 
see that this formula extE!nds to operators T which are 
similar to self -adjoint operators. Further, for any 
closed operator T, if N1 is a subset of the spectrum 
a( T), and r is a rectifiable, simple closed curve con
taining N1 in its interior and a(T)\JY1 in its exterior, 
then 

(17) 

is the spectral projection corresponding to N 1 • Thus the 
first of these formulas gives 

(E([ -1, w])f)(J-L) = lim. ~(f W dll R(J-L - iE,K)f 
e-o 1T1 -1 

+ {-ldJ-LR(Il+iE,K)f) 

which reduces to Eq. (15a) by precisely the same steps 
leading to Eq. (7), and the second formula gives Eq. 
(15) 

This analysis-in particular Eq. (16)-is valid in 
X 2 (1). However, it may be extended to Xp(l) by observ
ing that M = X 2(1) n Xp(l) is dense in Xp( I ) for all p> 1. 
Then the boundedness of the projections E in p-norm 
follows from the analysis of Lemma 6, as is evident 
from Eqs. (15), and the algebraic properties of the 
spectral resolution are a consequence of the bounded
ness of the projections and the density of M. In more 
detail, since 

E([ - 1, w ])E([ - 1, w']) = E([ - 1, w/])E([ - 1, w]) = E([ - 1, wj) 

on M for w' ~ w, and the projections are bounded opera
tors, we immediately obtain this nondecreasing proper
ty on iii = Xp(l). Likewise, the validity of 

KE=EK 

on M and the boundedness of K on Xp(1) extends the 
equality to all of Xp(l). The identity 

E([-1,1])+ 6 E(v)=I 
vEo/Kl 

also results from these denSity arguments, or alter
natively, directly from Eqs. (15). Finally, the exten
sion of (strong) right continuity 

limE([ - 1, A + 0)) = E([ - 1, A)) 

to Xp(l) may be seen easily by using the uniform bound 
on the projections 
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We state these results in a theorem. 

Theorem 10: The spectral decomposition of the 
transport operator A in Xp(l) is given by 

1 

K = J "A. dE ("A.) + L: IJE(v), 
-1 vEap(Kl 

where E("A.) is obtained from Eq. (15a) and E(v) from 
Eq. (15b). 

V.HALFSPACEPROBLEM 
The multigroup half space problem consists of the 

transport equation (1) defined for all x ~ 0 along wtth the 
boundary conditions 

I/i(x, 11) = fa ( 11) , 0 -'" 11 -'" 1, 

lim I/i(x , 11) = 0, 

for a given boundary (vector valued) function fa on the 
real interval J = [0,1] c I. Let us define the subspace 
Xp(J) C Xp(l) by /(11) = 0 for - 1-'" Jl-'" 0 if f E Xp(1) , so that 

Xp(l) = Xp(J) ffi Xp(l\J). 

It is assumed that the given function foEXp(J). Then by 
well-known arguments, the solution of the half space 
problem is equivalent to the construction of a (non
orthogonal) projection Q satisfying: 

(0 (Qf)( Jl) = f( Jl), 0 -'" 11 -'" 1 , 

(ii) (zI - K)-lQf analytic in z for Rez < O. 

The second condition implies that Q is a projection onto 

Xp(N) = { [ 1 dE("A.) + L: E(IJ)}Xp(l) Jo vEap(Kl 

R (v»o 

and the first that Q is a projection along Xp(I'\.J). The 
notation R(v) > 0 signifies that either Rev> 0 else or 
RelJ=O, ImlJ>O. In Caseology language, these condi
tions ensure that the negative frequency eigenvectors 
<I> (11, IJ), v < 0 or Rev < 0 are absent from Qf for any f 
EXp(J). 

In Ref. 3, some recent results of Mullikin 13 on a 
certain matrix Riemann problem are utilized to con
struct the projection Q on X2(1), 

(VeQf)(- Jlk f 1 _s-X-l(Jl)y-l(-s)L2(Vef)(s)ds, Jo 11 - s 
0< Jl-",l, 

(Qf)(I1) =f(I1), -1-'" Jl-'" 0, 

(18a) 

(18b) 

where the matrices X(z) and Y(z) factor the dispersion 
matrix, 

A(z)= Y(- z)X(z), (19) 

and satisfy some additional analyticity properties. In 
particular, X and Yare both continuous and invertible 
as functions from [- 1,0] to matrices on X;, and there
fore X-l(l1) and y- l (l1) are bounded as operators on Xp(J). 

To extend Eq. (18) to Xp(l) from M=X2(1)nXp(l), it 
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is only necessary to observe that Q is a bounded opera
tor on Xp(l). In fact, 

II Qf II p -'" II L 11211 V iJf II p 

-"'MpIILI141IX-l ll II Jly-lll IlL 11
4

11 f ll p, 

where Lemma 2 has been utilized, and IIx-ll!, II y_lll are 
computed only on Xp(I\J). Thus the half space theory 
may be developed for Xp(l). The factorization of Mul
likin, Eq. (19), is presently only known for IIL-lCI!<i, 
which, of course, limits these results. 

From the viewpoint of expansion theorems, the opera
tor of interest is the product FQ, which is bounded on 
Xp(l) since each of the factors is. In Ref. 3, this opera
tor is derived for Holder continuous functions f, 

(FQf)(lJ) =-2 1. (X-l(lJj+ _X-l(v)-)i 1 ds_S_ y-l(_s)L2 
1TlIJ Jo v-s 

x (V ef) (s)+ i(X-l(v}' + X-l(IJ)-)y-l( - v)L 2(Vef)(lJ) 

for 0 -'" v <:; 1, and (20a) 

(FQf)(V)=n'/v) [ildSv~s y-l(-S)L
2
(Vef)(s),a']J3v 

(20b) 
for IJ E (Jp(K) , R(v) > 0, where a' is defined by 

a' =Xc(IJ)J3v, 

and Xc is defined analogously to Ac' 

Theorem 11: If IIL-lCI! < i, then Eqs. (18) define a 
bounded projection on Xp(N) along Xp(I"J). Kl is semi
bounded on QXp(I), and thus is the generator of a 
holomorphic semigroup. Equations (20) for FQ are valid 
(almost everywhere) for f E Xp(l). 
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A recent paper of Kasperkovitz and Dirl [J. Math. Phys. 15, 1203 (1974)] concerning the tensor 
representation for compact groups is examined critically. The flaw which is found in the main theorem 
fortunately does not affect the deductions which are made from that theorem. 

1. INTRODUCTION 

In a recent paperl Kasperkovitz and Dirl considered 
the so-called tensor representation, which can be de
fined for any compact group by a conjugating action on 
its group algebra. This generalized earlier work of 
Gamba and Killingbeck,2-5 and overlapped with papers 
of van Zanten and de Vries, and Backhouse. 6,7 

An interesting problem which the authors of Ref. 1 
examined is how one correlates group-theoretic prop
erties with the occurrence of a full set of irreducible 
representations in the tensor representation. Unfor
tunately, the result which purports to settle this ques
tion, theorem 2, is false. It is our first job in this 
paper to give a counter example to theorem 2 and to ex
plain the flaws in the supposed proof of it given in 
Ref. 1. 

Kasperkovitz and Dirl used theorem 2 to establish 
certain results about the tensor representation for 
double point groups (theorem 6) and for the groups SU(n) 
(theorem 9). Happily, in spite of the downfall of theo
rem 2, both of these further results are true. This we 
confirm in Secs. 2 and 3. 

Finally, in Sec. 4, we show that the hypotheses of 
theorems 4 and 8 require strengthening to ensure the 
validity of their conclusions. 

2. TENSOR REPRESENTATION 

For a finite group G, the tensor representation T is 
defined on the group algebra A (G) by g - Tg , where 
Tg a=gag-1 for gc:. G, ac:.A(G). By identifying A(G) as 
an algebra of group functions, the definition of T can 
be made to work for compact groups (see Ref. 1). It 
is evident that T provides a faithful representation of 
G/Z(G), so it can only contain irreducibles (UIR) which 
are trivial on the center, Z(G). Theorem 2 of Ref. 1 
states that T contains all such UIR if G possesses a 
faithful UIR, DOl say. In Ref. 6, there is mention of a 
centerless group U3 (3) whose tensor representation 
fails to contain a particular UIR. This group is Simple, 
so all of its nontrivial UIR are faithful; the character 
table is given in Ref. 8. We therefore have a counter 
example to theorem 2. 

There are two distinct errors in the proof of theo
rem 2. We discuss the first as if the second does not 
exist. The authors of Ref. 1 correctly deduced from 
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Burnside's theorem that the n-fold product (D" 0 D"*)n 
contains all UIR of G/Z for large enough n, but erro
neously concluded that A (G) carries them. The fallacy 
is most easily appreCiated in the finite group case. The 
dimension of A (G) is finite if G is finite, so is exceed
ed by the dimension of (D"0 DOI.*)n for some n (assume 
dimD""* 1). It follows, for large enough n, that A (G) 
does not carryall of (D" 0 D" *)n, so we lose the power 
of Burnside's theorem. The other flaw in the argument 
is that the n-fold products of matrix elements Dn (x) 

1 1 
D~tk2(X)·· ·D~ntn(x), xc:. G, transform according to the 
symmetrized n-fold product of DOl. 0 DOI.* rather than to 
the full n-fold product to which Burnside's theorem 
applies. 

The above analysis is regrettably rather negative, 
in that at best the counterexample indicates that faith
ful VIR play no useful role in the theory of the tensor 
representation. 

Let us now turn to a reconsideration of theorem 6 in 
view of its apparent dependence on theorem 2. This is 
a finite task requiring the checking of UIR of the finite 
double point groups in their tensor representations. We 
recall that the frequency of a VIR D" in the tensor rep
resentation of a finite group is equal to the sum of the 
entries in the ath row of G's character table. The proof 
of theorem 6 given in Ref. 1 suggests that the authors 
only had in mind the proper double point groups, these 
being subgroups of SU(2). A character table check con
firms theorem 6 in such cases. The improper double 
point groups are subgroups of SU(2)xZ2. Again we con
firm the theorem, but with the exception of those groups 
where the inversion group Z2 forms a direct factor. The 
theorem breaks down for such groups G* = H* X Z2' 
where H* is a proper double point group, because the 
tensor representation gives a representation of 
G* /Z(G*) = H* /Z(H*) =H, the point group of H*, not of 
G = H X Z2' the point group of G*. 

3. THE TENSOR REPRESENTATION OF SU(n) 

In this section, we confirm the validity of theorem 9 
of Ref. 1 concerning the occurrence of VIR of SU(n) in 
its tensor representation. First, we briefly review the 
representation theory of SU(n). 

It is well known that a complete set of UIR of U (n) 
can be labelled by Young tableaux (YT) A = (Al' A2' ... ,An), 
Ai ? ~ ? ••• ? An ? O. Diagrammatically A is a shape con-
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sisting of rows of boxes, Xl in the first row, X2 in the 
second row, 0 0 0 ,Xn in the nth row, where the first boxes 
in the rows form a vertical column. If we now restrict to 
to SU{n) we find the equivalence (Xt , X2, ••• , Xn) 
- (At - Xn, 71.2 - Xn, 0 •• , An_t - An), so to obtain a complete 
label set for UIR of SU (n) we need only consider YT 
with at most (n - 1) rows. If DA is the UIR of SU(n) 
labelled by X then DM- has tableau X* 
= (At - An, At - An_1,. 0" 71.1 - ~). Diagrammatically, to 
obtain X*, we form a rectangle of n x 71.1 boxes, remove 
the YT X and rotate the remaining shape through 180°. 

To decompose the Kronecker product DArg; D~ we 
first set the tableaux X, JL side by side and write a 
fixed symbol, ai, in all of the boxes in the ith row of 
JL, i = 1,2, ..• ,n - 1. Thus, the rows of JL are distin
guishable but the individual boxes within a row are not. 
Then we adjoin the labelled boxes of JL to the YT X in 
all possible ways consistent with the following rules: 

(1) At each stage in the process the augmented array 
must be a YT with at most n rows. 

(2) Adjoin all boxes from the ith row before adjoining 
any boxes from the (i + l)th row (i = 1, ... ,n -1). 

(3) No two boxes containing the same symbol can be 
in the same column. 

(4) Each final tableau must be such that if we record 
the occurrence of the symbols at> ~, etc., reading the 
rows from right to left starting from the top, then at 
every step in the count the number of a;'s ~ number 
ai+t's (i=l, ... , n-1). 

Mter completion retain only one copy of each tableau 
with a given distribution of symbols. Finally, reduce 
all tableaux with n rows to tableaux with (n -1) rows. 
All possible tableaux resulting correspond to repre
sentations in the decomposition of the Kronecker pro
duct. A more detailed account of this theory can be 
found in Refs. 9 and 10. 

We also need to know which UIR are trivial on the 
center Z of SU(n), these being the only UIR which can 
occur in the tensor representation of SU(n). Z is the 
group {wIn: wn = 1}. Now a basis for DA can be formed 
from linear combinations of (Xl + 71.2 + .•. + An_1) pro
ducts of basis states for the self-representation of 
SU(n), via the (A1 + ~ + ... + An_1) tensor power. Hence 
DA. is trivial on Z if and only if Al + ~ + An_1 = nq, where 
q is a positive integer. 

Recalling that the tensor representation of a compact 
group G is equivalent to EB,,(D" rg; Dct *), summed over 
all labels (l' of the inequivalent UIR of G, we see that 
theorem 9 is a corollary of the following result. 

Lemma 1: If DA. is a UIR of SU(n), Al + A2 + An_l =nq, 
q an integer, then DA. is contained in DI> @ DI> *, where 
JL = «n -l)q, (n - 2)q, •.. , 2q, q). 

Proof: Clearly JL* = JL. We show that the YT 
X' = (At + (n - 2)q, A2 + (n - 2)q, ••. , An_l + (n - 2)q, (n - 2)q) 
- A is contained in the product of JL with itself. Note that 
the shape defined above has n(n - l)q boxes as required. 

Define an integer m by Aj ~ q if j,,; m and Aj < q if 
j> m. Now label all the boxes in the ith row of JL* with 
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a fixed symbol ai, for all i, and add these boxes to the 
rows of JL to form the YT [(n -l)q, (n -l)q, .•• , (n -l)q] 
- O. This is done systematically by adding q blocks of 
boxes from row i of JL* to rows i + 1, i + 2, ..• ,n of JL, 
for i = 1, " . ,n - 1. To obtain X' we must remove the 
extra boxes in rows m + 1 to n and place these in rows 
1 to m in such a way that the effect is as if we had 
carried out the adjunction subject to rules 1-4, above. 
We remove q boxes from row n, q - An_t boxes from 
row n - 1, etc. Boxes labelled by a1 are placed in the 
first row until that row has 71.1 + (n - 2)q boxes. Boxes 
labelled by ~ are placed so as to fill the second row, 
etc. Finally, we obtain X' by sliding the boxes in rows 
m + 1 to n to the left to fill up the gaps. It remains to 
check that we have not broken any of the rules. The 
two which are not completely obvious are 3 and 4. In 
fact, rule 3 is preserved in rows m + 1 to n because 
q - AJ "; q - Aj+1' Also, promotion of a box to a higher 
row in the tableau will not break rule 4, and of course 
we arrange the promoted boxes in accordance with 
rules 2-4. This concludes the proof. 

We can, in fact, go a little further than theorem 9, 
for as we now show, the UIR which occur in the tensor 
representation of SU(n) do so with infinite frequency. 
First we have 

Lemma 2: Let DA be a constituent of DI>@DI>*. If JL' 
denotes the YT (/-Ll + 1, /-L2' ••• ,/-Ln_l), then DA is also a 
constituent of [j" cs D iJI* . 

Proof: The YT JL' differs from JL in having an extra 
box in the first row. The YT j.L'* differs from JL* in 
having an extra box in each of its n - 1 rows. 

We know that a certain sequence of adjunctions of j.L 
to j.L* (note we multiply the other way round) leads to X. 
We perform the same sequence of adjunctions of j.L' 
to j.L'*, except that for all r, if previously the last box 
of the rth row of j.L' is placed in the sth row of j.L'*, we 
now place it in the (s + l)th row. This ensures that the 
final YT has one extra box in every row, including the 
nth. Finally, by reducing to n - 1 rows, we obtain A. 

It follows by induction anchored by the conclusion of 
Lemma 1 that no irreducible constituent of the tensor 
representation occurs a finite number of times. 

4. SOME REVISED THEOREMS 

In this section, we show that both theorem 4 and 
theorem 8 of Ref. 1 require stronger hypotheses before 
their proofs become acceptable. In both cases the 
proofs only work for faithful representations. The im
portant point is that if D is an n-dimensional unitary 
(resp. permutation) representation of a group G with 
kernel K, then D embeds G/K in U(n) (resp. Sn). It 
follows that D embeds G in U(n) (resp. Sn) if and only 
if K is trivial, that is to say D is faithful. With the 
insertion of the word "faithful", theorems 4 and 8 are 
true, Furthermore, it happens that with the stronger 
hypotheses, theorem 8 has a stronger conclusion. 

Proposition: Let n be an integer and G a finite group 
possessing a faithful n-dimensional permutation repre
sentation rr(n) 0 Denote by Ext(G, rr(n» the set of groups 
G'::::J G possessing an irreducible representation rr' 
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such that n' + 0 = n!n). Then Ext. (0, n!n» contains 8n+1• 

Furthermore, if we take the special case 0 = 8n, then 
8"+1 has minimal order in Ext(8n, n!n». 

Proof: We noted above that n!n) embeds 0 in 8n , con
sidering the latter as the group of all nXn permutation 
matrices. This representation of 8n is known to be 
[n] EEl [n - 1, 1] in reduced form. Now the branching laws 
tell us that [n] EEl [n - 1, 1] = [n, 11+ Sn, subducing from 
8n+1• We have 0 embedded in Sn C 8n+1 and [n, 1] + 0 
=n(n), so Sn+1EExt(0,n(n». 

Now take the special case 0=8n, so that n(n) 
= [n -1,1] EEl [n], and let 0' E Ext(8n , n(n». 0' possesses 
an irreducible representation n' where n' + Sn = nl n) . 
By the Frobenius reciprocity theorem [n] t 0' contains 
the n-dimensional irreducible representation n'. Also 
we always have that [n] t 0' contains the trivial repre
sentation of 0'. It follows that 10' 18n 1= dim ([n] to') 
?- n + 1. Hence 10' I ?- (n + l)n! = I Sn+11. Therefore, Sn+1 
is of least possible order in Ext(8n , n(n». This con
cludes the proof. 
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A theory of the scalar quantum field on static manifolds is constructed using the language of Feynman 
Green's functions. By means of examples in which the manifolds are parts of Minkowski space, we show 
how the "method of images" can be used to solve for the Green's functions. In particular, we consider the 
Rindler wedge and the space outside a uniformly accelerated conducting sheet. As an example in which the 
manifold is nonstatic, we consider the region exterior to a conducting sheet which is accelerated 
impulsively from rest to the speed of light. Finally, we study the steady-state part of de Sitter space where 
we do not obtain ~ unique result. 

1. INTRODUCTION 

In general, a manifold cannot be covered by a single 
coordinate chart. It is therefore of interest to consider 
the problem of quantizing a field in a coordinate system 
covering only part of flat space as a preparation for the 
more general problem. For example, Fulling1 has 
considered the natural quantization of a Klein-Gordon 
field in flat space using Rindler coordinates which cover 
only a wedge of the complete manifold. The resulting 
theory is not equivalent to the usual Minkowski space 
theory. Quantization on a general manifold is therefore 
a problem of the same nature as the construction of the 
usual field theory in Rindler coordinates as if one had 
no knowledge of Minkowski coordinates. It will appear 
from our work how one is to recognize the theory ap
propriate to a given manifold in the case when the 
manifold is static. 

We approach the problem by taking the Feynman 
Green's function as the basic object. Like any Green's 
function this is a global object, and must be defined 
with boundary conditions appropriate to the physical 
problem under consideration. A trivial example is the 
Green's function in electrostatics for an infinite plane 
conductor. This has a Singularity in the unphysical re
gion corresponding to an image charge. We expect the 
same sort of behavior for the Feynman Green's func
tion for a hyperbolic operator L on an incomplete 
(space-time) manifold M. Suppose M to be an analytic 
manifold which can be analytically extended to a larger 
manifold ,\;10' Given a Green's function G for L on M 
which satisfies 

(1) 

on M, one may analytically extend G as a function of 
x to Mo. There is no reason to believe that the result
ing function will be a Green's function on 11J0; in gen
eral, it will have singularities in ,'110 - .\;1. We may 
define a function as the difference between the left- and 
right-hand sides of (1) when x lies in Mo - }\II: 

p(x,Xl) =LG(x,xl) - 05(x,x1). (2) 

We observe that p represents a distribution of "image 
charges" in ,'110 - M since if L possesses an inverse Go 
on Mo then a solution of (2) is 

1 1 J' 1 G(x,x )=Go(x,x)+ dyGo(x,y)p(y,x). (3) 
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In the Rindler wedge we find the Feynman Green's 
function for a scalar field according to the prescription 
of Sec. 2 by imposing analyticity requirements in the 
Rindler time coordinate. By exhibiting the Green's 
function in the form (3) it is shown that it does indeed 
possess an image charge distribution in the unphysical 
region. Conversely, by subtracting out the contribution 
from this image distribution one recovers the Feynman 
Green's function appropriate to the complete manifold, 
in this case, of course, the standard Minkowski space 
Green's function, but expressed in terms of Rindler 
coordinates. 

Seeking a solution for the Feynman function of the 
form (3) provides, in fact, a powerful method of solving 
field theories on restricted manifolds. We use this 
method to solve the problem of a scalar field outside a 
conductor moving with constant finite acceleration. We 
are again led to a stable field theory, which moreover 
goes over into that of the previous case as the accelera
tion tends to infinity. This provides some insight into 
the physical significance of the Rindler wedge. In both 
cases we calculate the vacuum expectation value of the 
energy- momentum tensor for a massless scalar field 
in two dimensicJlls and confirm the "conformal anomaly" 
of Fulling and Davies2 rather than the result of DeWitt. 3 

As a last example in flat space, we consider the case 
of a "conducting piston" which remains at rest until 
time t = 0, after which it moves out with the velocity of 
light. The Bogoliubov coefficients are calculated and 
shown to give a black-body spectrum in the Rindler re
gion. However, by causality, the acceleration of the 
piston cannot influence the interior region, so we cannot 
interpret this as a particle flux. The problem is dis
cussed from the point of view of the energy-momentum 
tensor and the effective Lagrangian. 

Finally, we consider an example in curved space
time, namely, the steady-state universe. It is known 
that the creation of matter here cannot be both uniform 
and in particle-antiparticle pairs for a realistic model 
universe (from y-ray observations), so this example 
is not chosen for its relevance to cosmology. Rather 
it is an exactly soluble model in a curved manifold for 
which, however, the solution is not unique. 

In this paper we keep the mass of the field and the 
dimension of the space arbitrary in order to examine 
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the relation between the general case and the massless 
theory in two dimensions, which is to be distinguished 
as an exceptional case in view of the properties that it 
enjoys with respect to conformal transformation. An 
example of the pathology of the massless two-dimen
sional case from our point of view is that the Feyman 
function appropriate to the Rindler wedge diverges at 
the boundaries of the coordinate patch and so may not 
be sensibly continued into the unphysical region, where
as in all other cases this may be done. 

Two appendices deal with the calculation of the 
Bogoliubov coefficients for the piston problem and with 
the evaluation of certain integrals that would otherwise 
disrupt the narrative. 

2. FIELD THEORY ON STATIC MANIFOLDS 

In this section we show how to translate the canonical 
theory for the Klein-Gordon field in static manifolds 
covariantly into the language of Feyman Green's 
functions. 

Consider a manifold M endowed with a Lorentz 
metric g and a global time like Killing vector field a/at. 
Let V be a vector field parallel to a/at but normalized 
so that g(V, V) = - 1. 

Then associated with V we may construct a new 
metric h on M by 

h(X, Y) =g(X, Y) + ?Ig(X, V)g(Y, V) 

with X and Y arbitrary vector fields. In coordinate 
language the components of the new metric are 

h"V=g".+AV"V •. 

The essential point is that, for A> 1, h is positive 
definite and therefore in terms of this new metric the 
operator o-m2 is elliptic rather than hyperbolic. Sub
ject to appropriate spacial boundary conditions, it 
therefore possesses a unique inverse G\. We shall see 
that regarded as a function of A, G~ is analytic in the 
complex plane cut along the real axis from 1 to - 00. 

G~ may be analytically continued from A> 1 to the value 
corresponding to the physical metric A == 0 either 
through the upper half-plane, yielding the Feynman 
function, or through the lower half-plane yielding the 
negative of its complex conjugate. It will emerge from 
the following that this construction yields the unique 
Green's function analytic in the lower half (t - t')2 plane. 
We could arrive at this same Green's function by find
ing a complete set of normal modes that are positive 
frequency with respect to the Killing field a/at and con
structing a Fock space in the usual way. In this latter 
approach the analyticity property with respect to 
(t - (1)2 arises from the evaluation of the vacuum expec
tation value of a time ordered product of field opera
tors. We prefer, however, to proceed by analytic con
tinuation from a space of positive definite metric since 
this emphasizes the role played by the global Killing 
field. 

Since ",vI is static, coordinates may be chosen such 
that the line element corresponding to g takes the form 

ds 2 = - a2(x) dt2 + Yjk(X) dx
j 
dx\ 
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where )ljk is the positive definite metric induced on the 
hypersurfaces orthogonal to a/at. In these coordinates 
the line element corresponding to h takes the form 

i'S2 = (A - 1)a2 dt2 + Yjk dx j 
dxk 

and the equation satisfied by the Green's function 
becomes 

(
_1_ ~) I _ ia W, t')15(X x') 
A_lat2+EG~(x,X)--y1/2 {A_l)1~2 , 

where E is the elliptic operator 

(a/y1/2)Oj(ay1/2yikak) _ m 2a2, 

We shall seek a solution to (4) of the form 

G~(X,X')""'i(A-l)1/4 10'" (4::)1/2 

(4) 

x exp[ - (t - t')Z(A - 1)1/2/4s ]g(s, X, X') (A> 1). 

(5) 

A certain loss of generality is involved since (5) ex
hibits the time dependence of G through a representa
tion that is essentially a Laplace transform. This is 
equivalent to the imposition of a boundary condition 
since it is evident from (5) that the representation re
quires that G~ - 0 as [- ± 00. It is also equivalent to the 
assumption that G should admit an expansion in terms 
of normal modes that are positive frequency with 
respect to a/at. It is therefore essential to choose the 
Killing field appropriate to the boundary conditions 
imposed by the problem under consideration. For ex
ample, it may be that the pOints for which t - ± 00 are at 
finite distances, as in the case of Rindler coordinates. 
The correct Green's function is obtained if these points 
are the trajectories of perfect conductors (mirrors) in 
the space-time, 

Substituting (5) into (4), we find 

a15([~ t')O(X, x') 
y1l (A_l)1/ 2 

_ -1/41'" ds ( 1)(2 _1..) 
-(A-I) 0 (41TS)1IZ gs ,X,x as 2s 

( 
(t_tl)2(A_l)1/2)+( 1)114 f'" ds 

xexp - 4s A - 0 (4-rrs)1/2 

( 
(t-t'f(A-l)1/2) I 

xexp - 4s Eg(s, x, x). 

Integrating by parts and using the relation 

1· exp[- (t- t
l
f(A-l)1/2/4s] == (A_1)-1/4 5(t t'l / .. T (41TS)1/2 , , 

we see that g(s, x, x') satisfies the diffusion equation 

_ 1 'Eg 
Eg- (A_l)1/2 as (6) 

with the initial conditions 

( ') a(x) "( ') g o,x,x = y1/2(X) v X,X . (7) 

We assume that, subject to suitable restrictions on the 
spatial metric Yjk and spatial boundary conditions, the 
solution to (6) is unique and that the large s behavior of 
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the integrand is such as to converge the integral (5). We 
observe that GA is, as anticipated, analytic in the com
plex ;\. plane cut along the real axis from - 0() to 1. 
Using (6), we approach ;\.=0 through the upper half
plane to obtain 

G(x ,x') = expe!7T) £~ (4::)1/2 exp [- i(t ;stl)2 ]g(S, x, X'). 

(8) 

It is evident from (8) that G is analytic in the lower 
half (t - t,)2 plane. 

Alternatively, if G is analytic in the lower half (t - t,)2 
plane and tends to zero as (t - t,)2 - 0() through the lower 
half-plane, then the (t - t,)2 dependence of G may be 
represented by a half-range Fourier integral. That is, 
there will exist some function g(s, x, x') such that (8) 
holds. The uniqueness of this representation then 
follows by substitution of (8) into the equation 

(u- m 2)G(x,x')=- 0(x,x')/gl/2 

and by the uniqueness of the solution to the associated 
parabolic problem (6). 

3. THE RINDLER WEDGE 

Take n-dimensional Minkowski space with standard 
coordinates (t,x,x2, ... ,xn_l) and consider the co
ordinate transformation in the x, t plane 

t=~sinhT, x=~coshT. 

In the new coordinates the line element is 

ds2=- ~2dr+d~2+dx2 

and the transformation is regular in the wedge x> I t I , 
which we shall call the Rindler wedge (region I in Fig. 
1). The whole of Minkowski space, with the exception of 
the lines x =± t, can be covered by four coordinate 
patches of this type in an obvious way. We shall use 
this later to coordinatise points in region II (Fig. 1) 
and in regions F and P (Fig. 6). Returning to the 
Rindler wedge, it is clear from the expression for the 
metric that a/a T is a global timelike Killing field and 
the corresponding normalized timelike vector field is 
~-la/i!T. 

We could at this stage proceed as in the previous sec
tion in order to obtain the Feynman Green's function 
appropriate to this manifold. The calculation involved 
is straightforward, and the solution to the associated 
parabolic problem (6) turns out to be 

g(s, 1;, E,', x, x') = 4 f ~;~2~ exp[ik. (x - x') 1 £~ dv v sinhv7T 

Xexp[- v2s(;\._ 1)1/21Kiv (/J.E,)Kiv (/J.E,'), 

where we have set /J. = (k2 + m 2 )1 /2. 

However, we shall require a knowledge of the normal 
modes for the problem in Sec. 5 so we shall employ 
them here in order to calculate the Feynman function. 
The Klein-Gordon equation in these coordinates is 
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II 

'C'=-CD 
~=o 

FIG. 1. The (x ,t) plate of 
Minkowski space showing the 
Rindler wedge (l) bounded by 
the lines x = '" t. The lines 
~ = constant are the trajecto
r ies of the Killing vector. 

and a complete set of solutions that are of positive fre
quency with respect to a/eJT is 

Vtv (x) = [2/ (27T)n/2](sinh7Tv)1 /2 exp(- ilJT)Kiv(/J. E,) 

x exp(ik· x), 

where Kiv(/J.I;) = K.iv(/J. E,) is a Macdonald function (Bessel 
function of the third kind). With respect to the usual 
inner product on T equal to constant hypersurfaces 

(Vtv, Vw i=1dXJ Tv:" ~ V t •v• 

these solutions are orthonormal: we have 

(Vtv, Vt'v') = (2~)2 J ~E, Kiv(/J.I;)Kiv·(/J.I;)(v + v') 

x (sinhv7T sinhv'7T)1 /2{)(k, k') 

= o(v, v')o(k, k'). 

We can decompose the field operator cp(x) with respect 
to the Vtv as 

f ~ dv ( . 1/2f () 
cp(x)= J

o 
(27T)n/2 2 slllhv7T) dkK,v /J.i; 

x{avt exp(- iVT + ik· x) + a~t exp(ivT- ik· x)} 

(9) 

with a:t> avt creation and annihilation operators for 
"Rindler particles. " The Feynman function is defined by 

G(x, x') = i(O I Tcp(x)cp (x') I 0), (10) 

where 10) is the state annihilated by all the avt. Since 
a~t and avt satisfy the usual commutation relations, we 
have 

(0 I avta:'t·1 0) = (0 I [avt , a:'t·ll 0) = {)(v, v')o(k, kIlo (11) 

Using (9) and (11) in (10) we obtain 

G(x,x')=i i~ (2~)nsinhV7Tdv f dkKiv(/J. E,)Kiv(/J. 1;') 

xexp[ik·(x-X/)-ivIT-T'll, (12) 

This is analytic in the region Re IT - T'l> 0, 1m IT - T' I 
< 0 [i. e., in the lower half (T- T/)2 plane] as required. 

To evaluate this integral, we need the relation4 

K,v(/J. i;)K,v(/J. E,') = if.: d;\. exp(ilJ;\.)Ko(/J.'Yt), (13) 

where yi = 1;2 + 1;,2 + 2E,E,' cosh;\.. 

Let u = I T- T'I. It will be convenient to suppose 
initially that Imu < - 7T; then we may interchange orders 
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of integration and with the aid of (13) write (12) as 

G(x,x')=i i",,""dA i"" :~ sinh7Tv exp(-iV(U-A)] 

f dn-2k 
x (27T)n-2 exp[ik· (x- x')]/(0(I1Y1). 

The v integration is straightforward and yields 

1"" 
dv . . -1 

O -22smh7Tvexp[-zv(U-A)]=2[( )2 2]' 7T 7T A-U +7T 

To perform the k integration, we use the integral 
representation 

/(0(111'1) = i "" ~; exp [ - ~ (z + ~Yr) ] 
and interchange the orders of the k and z integration. 
Setting z = myU 1'1 + (x - X,)2]-1 /2v and y~ = YI + (x - X,)2 
we have 

f (2~n-2 exp[ik. (x- X')]/(0(I1Y1) 

The integrand contains poles at u ± i7T lying below the 
real axis, i. e., below the contour of integration. To 
analytically continue to Imu = 0, we must ensure that 
the contour of integration is deformed so as to remain 
above the poles. Therefore, for Imu = 0, we integrate 
along the contour shown in Fig. 2. 

The contribution from the pole at A = U + i7T is 

i ( In ~ (n-2)/2 

Go (x, x') = 27T 27T(20)1 /2 J /(n-2) /2 ((2m
2
0)1I2), 

where (20)1/2 is 1'2 evaluated at A=u+i7T. Since (20)1/2 
is just the geodesic separation of x and x' expressed in 
Rindler coordinates, Go(x,x') is seen to be the Feynman 
function for Minkowski space. So far we have 

Z· f"" dA (/.11 ) (n-2) /2 

G(X,X')=GO(x,X')- 27T _"" (A-1'')2+1T2 21T; 

X/(n_2)/2(lI1y), 

where 

Y=Y2(A- 1') 

2104 

= [~2 + e2 + 2~~' cosh(A _ 1') + (X- x,)211 /2 

u+irf 

x U-I'fT 

FIG. 2. The contour for the A 
integration. 
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is the geodesic distance between the point (1', ~,x) in 
region I and the point (A, e, x') in region IT. Thus we 
can write 

G(' ') G () f"" ciA , (-
x,x = 0 0 - _"" (A- T')2+7T2 Go 0), 

the second term representing a contribution from an 
image charge density - [(A - 1")2 + 7T21-1 distributed on a 
line x=x', ~ = e in region IT (Fig. 3). 

The effective Lagrangian5 is calculated from 

Ll=hKl/2 J G(x,x)dm 2• 

The ultraviolet and infrared (in the massless case) 
divergences of G(x,x) may be isolated in the contribu
tion from Go(x ,x) (except :when m = 0 and n = 2): 

It is of interest to compute the effective energy 
momentum tensor. In two dimensions, where the 
canonical and "new improved" versions agree, we have 

(T uv > =- ilim{a"",- tK"v((1~' - m2)}G~'\:,x'). 
x-x' 

Dropping the infinite term from Go and using the 
integral representation of K O(111y), we obtain 

In the limit m - 0, this gives 

( TI) __ (TT) ___ l_ f""~ 1 
I - T - 87T~2 _"" A2 + 7T2 cosh2A/2 

The integral may be evaluated by residues since 

f "" dA 1 1 ( dA 1 1 
_"" A2 + 7T2 cosh2A12 = 27Ti )c A - irr cosh2A/2 = '3 

with the contour C consisting of the real axis and the 
line (- co + 27Ti, oc + 27Ti). Thus, 

(Te'> = - (T/> = -1/24rr~2, 

(T/) =(T/) =0. 

This confirms the existence of a "conformal anomaly" 
as found by Davies and Fulling. The origin of the 
anomaly is clear enough in our treatment. We have 
regularized the divergences of the theory by using a 
representation of the form (3). In two dimensions this 
is permitted only if we make the theory massive, there
by explicitly breaking the conformal symmetry. What 
we have shown is that the symmetry is not restored in 
the limit III - O. 

, 
I 

I , 
, X 
I 

\ 

\ 

x 

FIG. :J. The image charge dis
tribution for the Rindler wedge. 
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· V=(?''l,Q) 
FIG. 4. Coordinates for the 
moving mirror problem. The 
mirror is the surface ~ =a. 

4. A MOVING MIRROR PROBLEM 

The ~ = const surfaces in the Rindler wedge are sur
faces of constant acceleration. Choose ~ =a to 
be replaced by a perfect conductor for the cp field such 
that cP is required to vanish on ~ = a which then becomes 
a moving mirror (Fig. 4). 

Let x = (T, ~,x) E I, x' = (T', ~', x') E II then the 
Minowski space Green's function for a massive scalar 
field is 

i ( m )("_2)/2 
Go(x,X') = 21T 21TY K("_2)/2(my) 

with 

y2 = ~2 + e2 + 2~e cosh(T- T') + (x- X')2. 

Using (14) with Y2 replaced by y, and the inverse 
Fourier transform of (13), we can write 

i f ~ dv J dk [. ( ')'k ( ')] G (x x')=- - --exp-zvT-T +Z • x-x 
0, 1T _~ 21T (21T) "-2 

xKlv(jJ.~)Kiv(lln. (15) 

If we require both x, x' E I then some care is necessary 
to satisfy the requirement that Go be analytic in the 
upper half i = (x - x,)2 plane, with now l = ~2 + e2 

-2~ecosh(T- T')+(X-X,)2. To this end, we replace 
the smaller of ~ and ~' in (15) by ~< exp(iG) and analyti
cally continue Go to B=1T. For B=1T-E we have 

l = ~~ + ~~ - 2~>~< cosh(T- T') + 2i~<E(~> cosh(T- T') - ~<) 

which manifests the correct analyticity property. This 
yields 

G (x x')=£ l~ dvf~ exp[-iv(T- T') 
0, 1T _00 21T (21T)"-2 

+ik· (x- x')] xKiv(IlUKiv(exp(i1T)Il~<) (16) 

as our expression in normal modes for the Minkowski 
space Green's function in the Rindler wedge. 

We are seeking a Green's function which vanishes on 
~ = a. In view of the result of Sec. 3 let us assume that 
this can be obtained by adding a contribution from an 
image distribution p(y;x') located in region II. Thus, 
we take 

G(x,x') = Go(x,x') + I d"yGo(x,y)p(y;x') 

with the boundary condition 

0= Go(z,x') + I d"yGo(z,y)p(y;x') 

(17) 

(18) 

for all z in the boundary ~ = a. This is an integral equa
tion for p. Substituting for Go from (16) and noting that 
the relation must be valid for all z in the boundary 
gives 
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o =K/v(Il~')Klv(exp(i1T)lla) + J.:d>..exp(ivA) 10 00 
dT/'T/' 

xK1v(jJ.a)K1v(1l T/')p(A, T/'; n. (19) 

Using the relation (valid for C> 0) 

1 fC
+

100 
1 -;- dIlIlI/v(jJ.T/)Kiv(jJ.T/') = ~ 5(T/, T/'), 

t1T C_loo " 

we obtain the solution for p: 

peA, T/; ~') = - 2!2i fdV exp(- iVA) f
C+100 

C-icQ 
djJ. jJ. 

x Iiv (jJ.lJ)Ki v(fJ. §')K/v(exp (i1T) Ila) 
Kiv(lla) 

Substituting for Go from (16) in (17) and using (19) to 
eliminate p gives us G(x, x') in the form 

G(x x') = £fdVf~ exp[ - iV(T- T') + ik(x- x')] 
, 1T 21T (21T )n-2 

xf(v,kl~,n, (20) 

where 

f(v, k I ~, n =Kiv(1l ~»K/v(exp(i1T)jJ. ~<) 

K Iv(jJ. OK/v(1l g ')Kl v(ex p(i1T) fJ.a) 
- Kiv(lla) • 

Now the analytic continuation of K;v(?:exp(iB» to B=rr 
is given by4 

K iv (?: exp(i1T» = exp(1T v)Kiv (?;) - irrliv (?;)' 

This enables us to write 

(21) 

(22) 

f(v, kl~, e) =i1Ti.v~~>; [Kiv(jJ.Uliv(lla) - Kiv(jJ.a)Iiv(ll~d]. 
IV jJ.a 

(23) 

Using this in (20) it is straightforward to check that 
G(x,x') is a Green's function for the Klein-Gordon equa
tion vanishing on ~ = a. 

The expression (23) for f(v, kl~, n has Singularities 
in the plane at the zeros of Kiv(lla). These Singularities 
lie on the real axis. To obtain the Feyman Green's 
function we must choose the contour for the v integra
tion to avoid these Singularities in such a way that the 
resulting function be analytic in the lower half (T- T,)2 
plane. The appropriate contour lies below the poles on 
the negative real axis and above those on the positive 
real axis. (This will be verified presently. ) A possible 
choice C: (- 00 exp(iE), 00 exp(iE}) is shown in Fig. 5. 

To perform the integration, we now show that the 
contour may be rotated in the lower half-plane so as to 
envelop the poles on the positive real axis. Using the 
relation 

FIG. 5. Rotation of the contour for the 
1) integration. 
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(24) 

we see that the expression Kiv(J.L~<)Iiv(J.La) - Kiv(J.La) 
Xliv(J.L ~<) is invariant under v - - v as is the contour of 
integration. This means that we may take ('r- T') > 0 
in (20) without loss of generality. 

For I vi large and iv"-±N (N=O, 1",,), we have 

Iiv(~) - [r(1 + iv) ]-1 (~niV, 

Kiv(~) - Hr(iv)(~~riv + r(- iv)(~~)IV]. 
(25) 

For - 1T + E < argv < - E write iv = R exp (i{3) , - ~1T + E < {3 

< ~1T - E. Then 

1 r(iv) 1- (21T/R)I/2 exp[- R(cosf3 +sin(3)]RRCOB~, 

r(- iv) = 1T _I_ 
v sinh1Tv r(iv) 

Using these asymptotic forms, we find 

f(v, k 1 ~, e) - - (1Ti/2R) exp(- i(3)(~J ~»R exp(i~) 

-0 as R-OC). 

By Jordan's lemma, and the absence of zeros of Kiv(J.La) 
in Imv < 0, we may close the contour in the lower half 
v plane to obtain the contour C ' (Fig. 5). 

For a given k = I kl, let vrk be the rth zero of Klv(J.La). 
Then the v integral in (20) along C' is evaluated by re
sidues to give 

G(X,X') =i ~f(2~n-2 Nrk exp[- iVrk I T- T'l +ik· (X- x/)1 

where 
XKiVrk (J.L ~)Kivrk (J.L ~/), 

Nrk = lim {(v - vrk)[Iiv(IW)/Kiv(J.La)]}. 
~lJrk 

Here we see explicitly the analyticity in the lower half 
I T- T'l plane. This expression could have been obtained 
by starting from an expansion of the field operator in 
terms of normalized basis functions 

N,1I2 
Urk(x) = (21T)fn-2>12 K iVrk (fl~) exp(- iVrk T + ik· x). 

There are now two interesting pOints to be made in 
relation to this result. First, when x - x', we find 
G(x,x) is purely imaginary, thus the effective Lagran
gian is purely real and we again have a stable field 
theory (no particle production). 

Second, we show that we regain the result of the pre
vious case of the Rindler wedge by letting a - 0 (i. e. , 
the acceleration of the mirror, a-I, -00). 

Consider again the v integration in (20) round the 
contour C'. On the part of the contour in the lower 
half-plane we proceed as before with the expression 
(23) for f(v, kl~, n. In the upper half-plane we use 
instead of (22) the equivalent formula 

Kiv(~ exp(i1T)) = exp(- 1Tv)KiV(~) - i1TI_iv(~) 

to obtain an expression for f. Thus 

G(x, x') = ;f(2(~n-2 exp[ - iv I T- T'l + ik· (x- x')] 

{f 00 exp<ie) 1 [ 
x 0 ~: - i1TKiv(J.L~»I_iv(fl~<) 
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j OOexP<_ie) d [ 
- 0 2: -i1TKiv (J.L ~»Iiv(J.L ~<) 

. K ( )K ( tI) I;AJ.La)]} +Z1T Iv J.L~ iv J.Ls Kiv(fla) . 

The a - 0 asymptotic forms for the Bessel functions 
Iiv(J.La), Kiv(J.La) are the same as the v - 00 forms given 
by (25). The integrand on each part of the contour has 
been chosen so that for a - 0 the terms involving a 
ratio of Bessel functions tend to zero. Taking this 
limit and using (24) to combine the remaining terms 
leaves 

lim G(x,X') = [i/(21T)"1I 00 dv4 sinh1Tv 
.-0 0 

x I dkKiv(J.L~)Kiv(J.Le) exp[ - iv I T- T'l 

+ik· (x- X')] 

which is precisely the expression derived in Sec. 3 for 
the Green's function in the Rindler wedge. In an exactly 
analogous way it may be shown that the image distribu
tion for this problem goes over to that of the previous 
problem in the limit a - O. 

Consider now the two-dimensional massless case for 
which we wish to find the vacuum expectation value of 
the energy momentum tensor. 

The renormalized vacuum expectation value of the 
energy momentum tensor T'" v will be diagonal in 
Rindler coordinates and satisfy T'"" = O. Thus we may 
write 

On dimensional grounds the function p must be of the 
form 

The divergence condition T'"v; v = 0 implies that q is in 
fact constant. We may determine the value of q by 
taking the limit a - O. Thus by comparison with the re
sults of the previous section we find 

1 (-1 0) 
T'" v = - 241T ~2 0 1 ' 

confirming again the anomaly of Fulling and Davies. 

5. THE CASE OF THE IMPULSIVE PISTON 

We consider a plane conducting piston perpendicular 
to the x axis at rest at the origin for t < 0, which for 
t> 0 moves out along the positive x axis with the veloc-

II 

p p 

FIG. 6. Showing the regions I, II, 
F, P in the Minkowski x-t plane of 
the impulsive piston; the motion of 
the piston is shown by the thick 
line. 
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Uy of light (Fig. 6). In contrast to the previous ex
amples, there is no longer a global timelike Killing 
vector field. From this, and from the similarity of the 
morphology of the conformal diagram to that of the re
gion exterior to a collapsing black hole, 1 one might 
expect a flux of particles. However, a causality argu
ment shows that the piston cannot influence the ex
terior region and from this point of view one expects no 
flux and a stable vacuum. 

The mathematical situation is that at early times 
(t < 0) the Green's function must vanish at infinity and 
on the conductor at x = O. This is achieved if we de
compose the field operator r/> with respect to basis 
functions appropriate to Minkowski time: 

r/>(x) =6 {lli(x)a i +ut(x)at}, (26) 
i 

where 

uKt(x) = (2 fiT/ (21T)n/2] exp(- iJl! coshK) 

x sin(x Jl sinhK) exp(ik· x). 

(We denote adjoint operators by an asterisk rather than 
a dagger in anticipation of a matrix notation. ) At late 
times (t> 0), the Green's function is subject to Rindler
type boundary conditions, we decompose r/> in terms of 
the basis functions of Sec. 3: 

r/>(x) =0 {vi(x)b/ +vt(x)br}. 
I 

(27) 

The "late time" basis functions v/ are related to the 
"early time" basis functions u/ by a linear 
transf ormation 

v/ = 0 {aijuj + f3lJuj}, (28) 
j 

where a lj and f3/ j are the Bogoliubov coefficients for the 
problem. The orthonormality of the respective sets of 
basis functions requires the Bogoliubov coefficients to 
satisfy the identities 

where we have employed a matrix notation. 6 

The Feynman function for the problem is 

G( 
')_ .(outITr/>(x)r/>(x/)lin) 

x, x - ~ (out I in) 

with I in) and lout) defined as the "asymptotic" vacua 
annihilated by the a/ and b/, respectively. Using (26) 
and (27) in (30), we obtain 

G( 1)_''', ( ) *( )(outlbjatlin) 
x,x -ZLJtjx) u~ x< (tl' > ' jk ou 10 

where x) and x< denote the later and earlier of the 
space-time points x and x'. 

In view of (28) and the identities (29), we have 

a l = 0 (bja j / + b]f3j;), 
j 

therefore, 

Ii/}(out I in) = (out I (ai' an I in) 
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(30) 

= 6 (out I (bka k / + btf3t/)aj I in) 
k 

= :6 a kl ( out I bkaj I in) 
k 

and hence 

(out I bjat I in) = ( ~)-1 
(out I in) a jk' 

Substituting this result into (30) yields (suppressing 
indices) 

G(x, x') = iv(x»a~-1u*(x<) = iu* (x<)a-1v(x». 

Using (28), we obtain the equivalent relations 

G(x, x') = Gln(x, x') + iu*(x)a-1 f3u* (x') (3la) 

= Gout(x,x ' ) - iv(x)f3a-1v(x ' ), (3lb) 

where 

and 

Gout (x, x') = iv*(x»v (x<) 

are the Feynman functions appropriate to a plane con
ductor at rest and one with infinite acceleration, 
respec tively. 

The Bogoliubov coefficients a and f3 are computed in 
Appendix A and are found to be 

a"k, Kt'= (1- exp(- 2V1T»-1 12 (2/1T) 1 12 sinvKo(k- k/), 

(32) 

f3"k. Kt' = (exp(2v1T) - 1)-1 /2 (2/1T) 1 12 sinvKIi(k + k'lo 

It is trivial to verify that (32) satisfy the identities (29) 
which, since a and f3 are real reduce to 

a~Q- f3~f3=aa~- f3p=l, 

a~f3- f3~a = af3~ - f3a~ = O. 

In order to proceed with our calculation of the Feyn
man function we shall employ (3la) since the functions 
u have a simple form throughout the manifold whereas 
the functions v lose their simple form outside region I. 

We see from (32) that 

(a-1)Kk'. vk = (1- exp(- 2V7T»1 /2 (2/1T)1 /2 sinvKIi(k - k/) 

and hence that 

(a-1f3)Kk,K'k' = o(k + k/)~foo dv exp(- V1T) sinvK sinvK' 1T 0 

= Ii(k + k/) {1T2 + (Kl_ K/)2 - 1T2 + (i + KI)2} • (33) 

The term to be added to Gin is 

aG ln (x, x') = iu*(x)a-1f3u*(x/) 

= f(2~n-2 exp[ik· (x- x/)lAgln(k Ix ,x', t, t'), 

where 

Agln(klx,x ' , t, t') 
= (i/1T)j dKJ dK' ([1T2 + (K_K')2)"1_[1T2+ (K+K' )2]-1) 

x exp(iJl (t coshK + t ' COShK/)] sin(Jlx sinhK) sin(Jlx ' sinhK/) 
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= - (i/41T) J dK J dK' ([1T2 + (K - K'n-l- [1T2 + (K + K')2]-1) 

xexp[i/J.(x sinhK + X' sinhK' + tcoshK + t' coshK')]. (34) 

This integral is evaluated in Appendix B; we find that 
for x' E I 

G(x,x') ==G1n(x,x') + J_:dA{(A + T' +iE)"l(A + T'- 21Ti)"1 

- [(A- T/)2 +1T2]-1} Go(Y), 

i. e. , 

G(x ,x') = Go(Y) + f_: dA{(A + T' - iE)"l(A + T' - 21Ti)-1 

- [(A- T/)2 + 1T2]-1}Go(y) 

with y the geodetic interval between x and x, and y the 
geodetic interval between x and an image point in region 
II labelled by e and A. 

For x' EP we find 

G(x, x') == G1n(x, x') + 1.: dA{[ (A + T,)2 + 1T2]-1 

- [(A - T,)2 + 1T2]-1}Go (Y), 

where in the case y represents the geodetic interval 
between x and an image point in region F labelled by 
~' and A (Figs. 7 and 8). 

We appear now to have several methods by which to 
calculate a putative particle flux. Directly from the 
Bogoliubov coefficients (32), and the relation between 
the a j and the bl , we may compute the number of 
"particles" produced with quantum numbers (v, k): 

(in I b:kbvk I in) == (j3j3~)vk, vk 

== 15 (n-1> (0)/[exp(21Tv) - 1]. 

The presence of the term 15 (n-1) (0) reflects the infinite 
volume of spacetime occupied by these quanta. Even ex
tracting this factor, the spectrum gives rise to a di
vergent integral over k because of the infinite phase 
space arising from the infinite plane geometry. Let us 
therefore restrict our attention to two dimensions where 
this problem does not arise. In that case, the spectrum 
is Planckian [a uniformly accelerating observer whose 
worldline is ~ == const would observe a frequency v as 
corresponding to an energy ~-lv and would conclude that 
the spectrum corresponded to a temperature (21T!;)-1], 
this is reminiscent of Hawking's calculation. 8 

Alternatively, we can calculate (in I T ,"v I in) directly 
from Gin' This is Simplified by the following argument. 
Since (in I T ,"v I in) is to be evaluated relative to the "in" 
vacuum, in Minkowski coordinates it must be a function 
of the x coordinate alone. Since also T ,"v must be in
variant under arbitrary boosts parallel to the plane 
x == 0, it is of the form 

F 

, 
p p' , , , 

FIG. 7. The charge distribution for 
the impulsive piston when x' is in 
region 1. 
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T"v=diag(- a, b,a, ... ,a) 

with a and b functions of x. The divergence condition 
T"v;v=O requires b to be constant. Now the vacuum ex
pectation value of T ,"v could be evaluated by letting a 
certain differential operator act on Gin, viz., 

T,"V = lim T"v,G1n(x,x ' ) 
x~x' 

before renormalization; after renormalization we have 

T,"V = l,!.tp T,"v,G1n(y), 

where y(x, x') is the distance from x to the image point 
of x' in the plane x = O. We see from this that T uv - 0 
as x - cO so that the constant b is zero. Taking the trace 
of the energy momentum tensor, we find 

(n - l)a == - im 2GoCY) 

and therefore 

im2Go(Y) . 
T uv =- 1 dlag(-1,O,1, ... ,1). 

n-

Thus (T "..) corresponds to a pure vacuum polariza
tion for an inertial observer, as indeed we expect from 
the causality argument. Transforming to Rindler co
ordinates we find a (T, ~) component, (Tr() which is 
nonzero; it follows that a uniformly accelerated ob
server would see a flux. This flux has no relation to the 
Bogoliubov coefficients, depending only on the vacuum 
polarization of the conductor at rest, and vanishing for 
m=O. 

One can throw some light on the origin of the dis
crepancy in the observations of inertial and accelerated 
observers (without entirely resolving all the problems 
raised) by noting that < T lLV) is a tensor under coordinate 
transformations only if we normal order T uv relative to 
a given vacuum. The black- body spectrum above arises 
from a normal ordering with respect to the Rindler 
vacuum, which is perhaps natural for observers ac
celerated for all time. Our calculation of the Green's 
function involves subtracting a vacuum energy corre
sponding to Minkowski space in the discarding of 
Go(x,x) and hence a normal ordering with respect to 
Minkowski time. Whilst the Green function G(X,X') is 
given uniquely according to our theory by the boundary 
conditions, the extraction of physical information from 
G must be carried out with some care! 

Finally we know from the Bogoliubov coefficients that 
the in and out vacua do not differ by simply a phase and 
we would expect this to manifest itself in the effective 
Lagrangian. Indeed it does, for on the null plane x + t 
= 0 we observe from the expression for t:.g in that 
G(x, x) is infinite there (even after renormalization), 

'~ 

II 

/ 

" " 

, , , 
" , 

" 
" " ,," P 

/ 

F 

" " , p , , , 
• x" " 

" 

FIG. 8. The charge distribution for 
the impulsive piston when x' is in 
region P. 
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and this results in an infinite contribution to 1m I L 1 dx 
(in the massless case this is in fact the only contribu
tion to 1m I L 1 since ImL 1 vanishes when integrated over 
the rest of the manifold). 

6. THE STEADY·STATE UNIVERSE 

We use the steady-state model to illustrate a soluble 
problem on an incomplete curved manifold for which 
the solution is not unique. In the case of the static 
metric considered in Sec. 2 it was possible to represent 
the time dependence of the Green's function by an in
tegral of the form (5) in terms of the essentially unique 
solution of an elliptic equation. However, the steady
state universe is not static, so the time dependence of 
the Green's function is more complicated. If we attempt 
to find a representation of the form (5) for the (t - t,)2 
dependence of G, we find that g depends on time. Thus 
g satisfies a differential equation in which there appear 
derivatives with respect to time, and this will not have 
a unique solution without the imposition of further 
boundary (or initial) conditions. This is just the state
ment that the incompleteness of the manifold 'allows a 
certain amount of arbitrariness in the dependence of 
G on t + t', and this was not present in the static case. 
We would expect this to be the generic situation, so that 
in general a further physical principle is required to 
determine a unique theory. 

The steady-state metric in conformally flat form is 

ds2 = (1/K1)2)(- d1)2 + dr) 

with X= (xi> . .. ,xn_1). K is a measure of the radius of 
curvature related to the Ricci scalar by R = - n(n - 1)K. 

The Klein-Gordon equation with the "conformal term" 
included, 

L¢=( 0 - m
2

_ ~(:= nR)¢ =0 

becomes 

(.i!.. _ V2 + .!!!!..) ¢ = 0 
\01)2 K1)2 

with the replacement ¢ - (K1/21))"1+n/2¢. 

Choose new variables u = 1) - 1)', v = 1) + 1)'. We know 
that the Feynman function G is symmetric under 1) -1)'. 

Therefore, we decompose L into a symmetric and anti
symmetric part under u - - U, L = L+ + L_ and require 

Explicitly this is 

[ 
a2 4uvm2 J -- - G-O 

au all K(u 2 - v2) -

by seeking a solution of the form P(u2 - v 2)Q(v) we find 

is a solution for arbitrary A, with Z a solution of 
Bessel's equation and 

cy'
2 =m2/K - t 

Let ~ = v2 - u2, X = v2 + u2 and seek a solution of L.G 
=- 0 of the form 
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G(~, X, r) = 1 f(r, s) exp(- isX)(s01/2Zi,,(S~)ds (33) 

with r = (X- X')2. Explicitly L+ is 

L -4 .i!..+4 ~+8tL+4..£.. + 4m2X_V2 (34) 
+- XoX2 Xo~2 <'Oxo~ aX K~2 . 

Apply this to G, using L_G = 0, replacing derivatives 
with respect to ~ by derivatives with respect to s, and 
integrating by parts yields, as in Sec. 2, 

L+ = G = 4~ {_ 2is3 / 2f+ 2i :s (S5/2f) _ s:/2 V2f} ~1/2 
x exp(- iSX)Z i ",(s;) ds + 4[ - 2is5/ 2 

(35) 

For the integrand to vanish in n dimensions we require 

-2is3 / 2f+2i..2...(s5/2f)= s1/2 ..2... (rn-2 of). 
as 4rn-2 or or 

The appropriate solution is found to be 

f(r, s) =sn/2-2 exp(2isr2) 

in order to satisfy the analylicity properties below. 

We now have to choose Z and C, such that the in
tegrated term in (35) gives rise to a 0 function. It is 
convenient to use a representation of the 0 function in 
terms of the geodetic distance (2a)1/2 in the (n + 1) 
dimensional Minkowski space, in which the manifold 
can be embedded,9 rather than the geodetic distance as 
measured in the manifold. Calculation of a in our co
ordinates gives 1- iKa = (X - 2r2)~-1, which shows that 
we require a representation of the 0 function as the 
boundary value of a function analytic in the lower half 
(X - 2r2)~-1 plane of the form 

,,(n)( , ) 1· i exp(- in1T/4) [.("'~ ( ,)2)/] 
u 1),1), r = 1m (4 )n/2 exp z r- - 1) - 1) 4E . 

... 0 1TE 

We write Zi",=aHi~) +abHi~), since any Bessel func
tion can be written in this form, and choose C : [0, 00). 
The contribution from s = 0 to the final term in (35) 
vanishes; for the contribution from s - 00 we use the 
asymptotic form (~> 0) 

Hi~) - (2/1TS 0 1 / 2 exp[i(s ~ - 1T/4) + 1TCY./2]' 

Hlz,; - (2/1TS 0 1
/

2 exp[ - i(s ~ - 1T/4) - 1TCY./2]. 

Putting s = 1/2E we find 

a = - i(2/1T) (n-1> /2 exp[ - i(n - 1hr/4 - 1TCY./2]. 

The coefficient b is completely undetermined since 
it multiplies a term which is Singular outside the 
physical region 1),1)' > O. In fact, this term represents 
a 0- func tion singularity at the point (- 1)', x') antipodal 
to (1)', x'), with arbitrary complex charge b. Taking 
b = 0, we obtain 

G(x, x') = - i(2/1T) (n-1>/2 exp[ - i(n - 1)1T/4 - 1TQ/2] 

x 10 ~ sn/2-2 exp(i2sr2 - isX)H?j (s~) ds. 

Using the relation 
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F (
, +. ,. 1) x 2 0"2 ZQ,;;:-ZCl';-.-

2z~s 

and Goldstein's integral, 10 we obtain 

• , iKn/ 2-1 (~K)-n/2+1 (n -1 .) (n -1 .) 
G(1),1) ,r)= (4rr)n/2 \4 r -2- +w .r -2-- ZCl' 

(
n - 1 . n - 1 . n X - 2r2) 

X 2F 1 -2-+ ZCl"-2--ZO';"2; ~ . 

Transforming back to the original field variables 
(Kl/21))n/2-1cp removes the term (~K/4)-n/2+1 and we ob-
tain the Feynman function appropriate to the complete 
de-Sitter manifold. 11 

Taking b = 1 we obtain again the result for the half
space calculation of our previous paper. 11 

For general b, the addition to the de-Sitter Green's 
function in four dimensions, and with coincident points, 
is 

biK (1112 1)1/2 
e.G = (4rr)2 r(% + iCl')r(% - iCl'), Cl' = K - 4 . 

We have passed directly to four dimensions here since 
this term is finite. 

Using 

2 ( . . 
~=!:...gl/2G(x x) 2m2 2 " 

we obtain the addition e.L 1 to the de Sitter effective 
Lagrangian: 

e.Lt =- ~ (4~)2 jr(% +iCl')r(% - iCl')d(~2). 
Asymptotically, for m 2/K - c(), we use 

r(~+iCl').r(%-ia)-2rrCl'2exp(-1TCl') as 

to find 

{ b (m2) 3/2 (1Tm)} Ime.Lt - 1m 41T2 K exp -.fK . (36) 

Alternatively, for m 2/K - 0, we have iCl' - E - m 2/K and 
expanding in powers of m 2/K gives 

(37) 

We require Ime.L 1 = ImL 1 > 0 in order that the vacuum 
to vacuum transition probability, exp[ - 21m f L 1 dx], 
be less than unity. If (i) m is real and (ii) b is indepen
dent of m 2/K, (36) and (37) cannot both be positive. It 
then follows that b must be real and there exists no 
particle production. However, both of these conditions 
can be broken: (i) the "conformal" addition to the ac
tion - i2 Rcp2 = Kcp2 is of the same form as the mass 
term, so should be regarded as defining an effective 
squared mass m2 = /11

2 + 2K which can be positive for 
negative /}/2; 

(ii) the m 2/K dependence of b is entirely arbitrary. 
These conditions may be exploited to construct a e.L 1 
such that 

1m I e.L 1 dx > 0 
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in which models this may be interpreted as particle 
production. These models are of course highly con
trived, but illustrate the need for further physical input, 
for example, the asymptotic state of the system. Such 
considerations would be of importance in realistic 
cosmological models. 12 

APPENDIX A 

In this appendix, we calculate the Bogoliubov co
efficients Cl' and (3 of Sec. 5. 

We have 

and 

U Kk(x) = [2f7T/(21T)n/21 exp(- iJlt coshK) 

Xsin(xJl sinhK) exp(ik· x) 

Vvk(X) = 2( (sinhv1T)1 /2/ (21T)n /2] exp(- ivt)Kiv(Jl 0 

Xexp(ik· x) 

with 

J.l = (k2 + /11 2)112. 

In matrix notation Q and (3 are determined by 

vex) = QU(x) + (3u*(x). 

Setting Cl'vt, Kk' = Cl'vKo(k - k') 

and 

Pvt, Kk' = PVK O (k + k'), 

(A1) 

where QvK and PvK are the Bogoliubov coefficients that 
obtain in two dimension, (A1) reduces to 

(sinhv1T)1 /2 exp(- iVT)Kiv(Jl~) 

= .f1r Jo 00 dK sin(x Jl sinhK) 

x [Cl'vK exp(- iJlt coshK) + PvK exp(iJlt coshK) J. (A2) 

Since the functions U and v are solutions of the Klein
Gordon equation, (A2) will hold for all time if (A2) and 
its derivative with respect to T hold for T= O. Recalling 
that x = ~ coshT and t = ~ sinhT in (A1) we obtain the fol
lowing equations: 

(sinhv1T)1 /2K iv (J.l 0 = 1Tl /2 J~ 00 dK sin(~iJ. sinhK)(Cl' + P)vK, 

v(sinhv1T)1 /2K iv (iJ. 0 = 1Tl /2 J~ 00 dK sin(~iJ. sinhKHiJ. 

xcoshK(a - P)VK' 

These integrals may be inverted and the resulting ex
pressions evaluated using the formula 

f 00 d~ ~XKiv(J.l 0 sin(~iJ. sinhK) 
o 

=~ . hKr(2+A~) r(2+A-iV) 
J.l X+1 sm 2 2 

(
2 + A + iv 2 + A - iv 3. . h2K) 

x 2F 1 --2--' --2--; "2' - sm . 

When A = - 1 the hypergeometric function simplifies to 
sinvK/v sinhK and when A = 0 it simplifies to sinvK/ 
v sinhK coshK. 

Thus, we obtain finally 
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~VK = [exp(21171') - 1}-1I2(2/d12 sinllK 

which establishes (32). 

APPENDIX B 

This appendix deals with the evaluation of integral 
(34). We have 

c..g =-~f~dK!~dKl 
in 4lT _~ _~ 

X [(71'2 + (K - K')2)"1 - (71'2 + (K + K')2)-1] 

X exp[if.1. (X sinhK + X' sinhK' + tcoshK + t' COShK/)] 

= ~ f ~ dA! ~ dA/[ (A2 + 71'2)-1 - (A /2 + lT2rl] 
8lT _~ _~ 

[ ( (A + A' ) (A - AI) Xexp if.1. X sinh -2- + x' sinh -2-

(A + AI) (A A/))~ + t cosh -2- + t ' cosh T 'j. 

where we have set 

A=K+K', A'==K-K'. 

There are four cases to be considered according as 
x and x, are located in I or P. 

In the first instance, let us take both x and x' in I; 
then we may set 

and 

x = ~ COShT, x' = e cosh'T', 

t= ~ sinh'T, t' = e sinh'T', 

c..g
in

= ;71'f~dAf ~dAI[(A2+rr2)"1_ (A,2+ 1T2)"1] 
_<:0 _co 

xexp {if.1. [~sinhe ~ A' + 1') +~' sinh(X.; A' + 'T)J}. 

(Bl) 

In the A integration displace the contour as shown 
in Fig. 9. This yields 

c..g1n = :IT I: dA f~~ dX.'[ (x. - ideA + 2lTi)"l- (A,2 + lT2)"1] 

2111 

xexp{- f.1. [~COSh(A; A' + 1') + e COSh(A; A' + 1") J} 
= 4i f ~ dx. (x. - iE)"1 (A + 2rri)-I! ~ d;,' 

rr _~ 0 

xexp{- f [AI + ~, (~2 + e2 + 2~e cosh(A + 1'+ T/))]} 

FIG. 9. Deformation of the con
tour of integration appropriate 
to (Bl), 
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_ .£/ oC dA'(A /2 + lT2r 1 r ~ dA 
4rr _~ J 0 A 

xexp{-1 r + * (~2 + e2 
+ 2~e cosh(A + 1'- T'n]}, 

(B2) 

where we have employed the substitutions 

A == exp(A/2)[~ exp(A'/2 + 1') + e exp(- A'/2 + 1")], 

A' =exp(A'/2)[~ exp(A/2 + 1') + e exp(- A/2- 1")], 

Therefore, 

c..g in = (i/21T) f_: dAr (A + 1" + iE)"1 (A + 1" - 2rri)"1 

- «A - 1")2 + lT2)-I]Ko(f.1.Yl) 

with 

Yl=[~2+~'2+2~ecosh(A- 1')]1/2. 

Now 

c..G in = fc::;n-2 exp[ ik. (X - X') ]c..g in 

and the integral may be performed as in Sec. 3 to yield 

c..G in == f_: dAr (A + 1" + iE)"! (A + 1" - 2rri)-1 

- «A- 1',)2 + lT 2)"1]Go(Y) 

with yas in Sec. 3. 

If x' E I but x E P then we may set 

x = - ~ sinh1', x' ==~' COSh1", 

t= - ~ COSh1', t' = e sinh1", 

This parametrization may be obtained from the previous 
case by making the replacements 

and 

1'- 1'+ilT!2. 

In (Bl) we may make the replacements 

~ - ~ exp(iB), 

1'- 1'+iB 

and continue analytically from B = 0 to B = IT/2. 

The result has the same form as (B2) except that now 

Y == - ~2 exp(- 2iE) + e 2 - 2~~' exp(- iE) sinh(1'- A - iE) 

= - ~2 + e 2 - 2~e sinh(1'- A) + iEl2~2 + 2~~' sinh(1'- A)]. 

(00) 

x and x' are null separated when 

- ~2 + e 2 - 2H' sinh(1'- A) = 0 

so that (B3) is equivalent to 

Y==- e+e2-2~esinh(1'-A)+iE. (B4) 

We observe that our analytic continutation has resulted 
in the correct prescription for the Feynman function in 
integral (B2). y as evaluated from (B4) is just the 
geodetic length between x and an image paint located in 
II and labelled by e and A. 
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For the case x' E: P and x E: I we make the replacements 

e - e exp(ie'), 

T'- T' +W', 

and 

in (Bl). Proceeding as before we obtain from (B2) 

~Gin(x ,x') = r: dAr «(A + T,)2 + rr2t l 

- «(A- T')2+rr2t l ]Go(Y), 

where we find in a manner analogous to the previous 
case that 

; = ~2 _ e2 + 2~e sinh(T- A) + iE 

is seen to be the geodetic length between x and an 
image point located in F and labelled by e and A. 

The final case when both x and x' lie in P is dealt 
with by making the simultaneous replacements 

~ - ~ exp(ie), e - ~' exp(iS'), 

T- T+iS, T'- T' +is' 

in (Bl) and continuing both Sand S' to rr/2. This gives 
an expression of the same form as (B5) with 

i=- e- ~'2_2 ~ecosh(T- A), 

i. e., y is the geodetic length between x and an image 
point located in F labelled by ~' and A. 
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Systems of differential inequalities and stochastic differential 
equations. III 
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Consider the system of stochastic differential equations x'(t,w) = f(t,x(t,w),w), X(Io,w) = Xo(w), where 
f(t,x(t,w),w) is a product measurable n-dimensional random vector function whenever x(t,w) is a product 
measurable random function, and it satisfies the desired regularity conditions to ensure the existence of 
solution process. By developing systems of random differential inequalities, a very general comparison 
theorem in the framework of a vector Lyapunov function is developed, and furthermore sufficient 
conditions are given for the stability of solutions in probability, in the mean and with probability one. 

1. INTRODUCTION 

The stability analysis of stochastic differential sys
tems of Ito type and differential systems with' Markov 
coefficients has been investigated by several workers, 
and it has been documented in Refs. 1-3. However, the 
stability analysiS of a system of differential equations 
under nonwhite excitations is very far from the satura
tion state. In fact, most of the stability study is devoted 
to linear systems. 3-9 Recently, the stability analysis 
has been extended to nonlinear random systems by 
Khas'minskii3,lu in the framework of Lyapunov's second 
method. A good deal of stability results have been sur
veyed in a recent monograph by Morozan. 3 The stability 
results for random differential systems3 are centered 
around either the use of the single or scalar Lyapunov 
function, or the use of the variation of constants formula. 

Very recently, by developing very general comparison 
theoremsll -

15 for Ito type stochastic differential equa
tions and differential systems with Markov coefficients 
in the context of a single as well as a vector Lyapunov 
functions and the theory of differential inequalities, suf
ficient conditions are given for the stability and bounded
ness of solutions of these stochastic differential systems 
in a systematic and unified way. Furthermore, very re
cently, the comparison theorems in Refs. 13 and 14 
have been utilized by Ladde and Siljak16 ,17 to study the 
connective stability of the large-scale stochastic sys
tems in engineering and ecology. 

In this paper, we develop the theory of systems of 
random differential inequalities, and obtain a very gen
eral comparison theorem in the framework of a vector 
Lyapunov function and the systems of random differen
tial inequalities. As indicated above, these extensions 
have several advantages over a single Lyapunov func
tion. In particular, a system may be unstable according 
to a single Lyapunov function approach, but it may be 
stable in the context of a vector Lyapunov function ap
proach. 13 ,18 In addition, very recently,16 it has been de
monstrated that the concept of vector Lyapunov function 
and the theory of differential inequalities seems to be 
a promising tool for undertaking the study of "com
pleXity vs stability" problem in the model ecosystems. 

This paper is organized as follows: 

In Sec. 2, depending on the mode of convergence, 
namely in probability, in the mean and with probability 
one, we define various notions of stability. In Sec, 3, 
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we formulate the basic theory of systems of random 
differential inequalities. These results include the de
terministic results18 as special cases. In Sec. 4, we 
develop a very general comparison theorem for random 
differential systems based on the vector Lyapunov func
tion and the systems of random differential inequalities. 
In Sec. 5, we give sufficient conditions for stability of 
solutions in probability, in the mean and in the almost 
surely sample sense or with probability one. These re
sults include the earlier results in Ref. 3 as special 
cases. Finally, examples are given to illustrate the 
usefulness of our results. 

2. NOTATIONS AND DEFINITIONS 

Let R n denote the n-dimensional Euclidean space with 
a convenient norm II • II. We also denote by the same 
symbol II . II the corresponding norm of a matrix. Let 
R. and R denote the nonnegative real and real lines, re
spectively. ForO()~p>O, D=D(O,p,Rn)=={xER": Ilxll 

< Pt. Let (n,], p) be a complete probability space. Let 
S(Rn

) denote the set of random n vectors defined on 
(n,], P) into Rn. For x E S(Rn), the qth moment of x is 
defined by E(lIxllq)=follx(w)llqp(dw), O<q<oo, and for 
1,,; q < 00 let U(n) be the space of n-dimensional random 
vectors with the norm IIXllq = [E(llxll

q
) l1/q. Let 

AC[R.,S(Rn)] denote the set of all almost surely abso
lutely sample continuous random functions defined on 
R. into R". For p> 0, D(S(W)) = D( 0, p, S(Rn)) ={x E S(W) 
= Ilx(w)11 < P with probability I}. In this paper we shall 
consider p, q such that 1,,; p"; q,,; 00. We shall mean by 
M[R.xD,S(R")] the class of random functionsf(t,x,w) 
defined on R. x D x n into R" such that f(t, x(t, w), w) is 
product measurable whenever x(t, w) is product 
measurable. 

Consider the system of stochastic differential equa
tions of the type 

x'(t, w) =f(t, x(t, wi, w), x(tu, w) =xo(w), (2.1) 

where xERn, jEM[R.xD,S(R")], andfis smooth enough 
to guarantee the existence of a sample solution xU, w) 
= xU, to, xu, w) of (2.1) for t? to. For existence and uni
queness theorems, see Refs. 3 and 19. 

We shall assume thatf(t, 0, w) '" 0, with probability 1 
(abbreviated w. p. 1), so that the system (2.1) possesses 
the trivial solution x(t) '" 0, w. p. 1. 

Now, depending on the mode of convergence in the 
probabilistic analysis, we shall formulate some defini
tions of stability. 
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Definition 2. 1: The trivial solution of (2. 1) is said to 
be 

(SP1) stable in probability, if for each E '> 0, TJ> 0, 
toE R+, there exists 15= l5(to, E, TJ) > ° such that 

p{w: Ilxo{w)11 > 15} < TJ 

implies 

p{w: Ilx(t,w)ll~ E}<TJ, t~to; 

(SP2) asymptotically stable in probability, if it is 
stable in probability and, if for any E > 0, TJ> 0, to E R., 
there exists 15 0 = 15 0(to) and T= T(to, E, TJ) such that 

p{w: Ilxo(w)11 > l5u} < TJ 

implies 

p{w: Ilx(t, w)11 ? E} < TJ, t ~ to + T; 

(SM1) stable in the mean, if for each E > 0, to E R., 
there exists a 15 = l5(to, E) such that the inequality 

E[llxo{w)II]",: 15 

implies 

E[llx(t, w) II] < E, t? to; 

(SM2) asymptoticall1,' stable in the mean, if it is stable 
in the mean and, if for any E > 0, to E R., there exists 
l5 u= l5u(to) and T= T(to, E) such that the inequality 

E[llxo(w) II] "" 150 

implies 

E[llx(t, w)ll] < E, t? to + T; 

(SSl) stable with probability 1 (or almost surely sam
ple stable), if for E > 0, tu E R., there exists a 15 = 15(t 0, E) 

such that the inequality 

Ilxo(w)II",:15 w.p. 1 

implies 

Ilx(t,w)II<E, t?tu w.p. 1; 

(SS2) asymptotically stable with probability 1 (or al
most surely sample asymptotically stable), if it is stable 
with probability 1 and, if for any E > 0, to E R., there 
exist 0< 150 = 15 0(to) and T = T(t 0, E) such that the inequality 

Ilxo(w)ll"" 15 w.po 1 

implies 

IIx(t,w)II<E, t>to+Tw.p. 10 

Definition 2.2: The trivial solution of (2.1) is said 
to be: 

(USP1) uniformly stable in probability, (USM1) uni
formly stable in the mean, and (USS1) uniformly stable 
with probability 1, if the l5's in Definition 2.1 (SP1), 
(SM1), and (SSl) are independent of to, respectively; 

(USP2) uniformly asymptotically stable in probability, 
(USM2) uniformly asymptotically stable in the mean, 
and (USS2) uniformly asymptotically stable w. p. 1, if 
(SP1), (SM1), and (SSl) hold, and the corresponding l5's 
and T's in Definition 2.1 (SPz), (SM2), and (SS2) are in
dependent of to, respectively. 

Based on Definitions 2.1 and 2.2, one can formulate 
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other definitions of stability and boundedness, 13,14 
analogously. 

Consider now the auxiliary stochastic differential 
system 

u'(t, w) =g{t, u(t, wi, wi, !I(to, w) = llO(W), (2.2) 

where gE LC[R+xRm
, S{R m

)], LC[R.xR m, S(R m
)] stands 

for the class of random functions g(t, u, w) defined on 
R.xRmxn into R m such that g(t, u, w) satisfies the 
Caratheodory condition in (t, u) for almost all WEn, i. e., 
g(t, u, w) is continuous in u for each t E R. and Lebesgue 
measurable in t for each fixed u with probability 1, and 
there exists a product measurable random function K: 
R+ x n - R. which is summable on R. with probability 1, 
such that Ilg(t,u, w)11 ""K(t, w) for 11ul1 ""p, O<p<oo w.p. 1; 
g(t, u, w) is quasimonotone nondecreasing in II for fixed 
t E R. w. p. 1. Under these conditions, existence of maxi
mal and minimal solutions with probability one can be 
shown analogous to the deterministic case1S with simple 
modifications. Let u(t, w) = u(t, to, lIU' w) be any solution 
of (2.2). 

Relative to auxiliary differential system (2.2), we 
need the corresponding definitions in our discussion that 
may be defined analogously. For example, the definition 
of stable in probability (SPt) runs as follows: 

Definition 2.3: The trivial solution of (2.2) is said to 
be stable in probability, if given E > 0, TJ> 0, to E R., 
there exists 15= l5(to, E, TJ) such that 

P {w:~ Ujo(w) '> 15'}<Y1 
.:1 

implies 

P{w:Lu;(t,w» E}' <TJ, t>to• 
t=1 

Definition 2.4: A function b(r) is said to belong to the 
class I<.. if bE C[R., R.], b(O) = 0, b{r) is strictly increas
ing in r. 

Definihon 2.5: A function b(r) is said to belong to the 
class vI<.. if bE C[R., R.], b(O) = 0, b(r) is a convex and 
strictly increasing in r. 

Definition 2.6: A function a(t, r) is said to belong to 
the cA. if aEC[R.XR+,R.], a(t,O)"'O, and a(t,r) is con
cave and increasing in r for each fixed t E R+. 

Definition 2.7: Let G be a function defined on R" into 
Rm. The function G is said to be convex if each compo
nent G j of G is convex for 1 "" i ",: 11/, and G is said to be 
concave if - G j is convex. 

In order to avoid monotonicity, hereafter, it will be 
understood, unless otherwise speCified, that all equali
ties, inequalities, and relations that involve the random 
processes will hold with probability 1. 

3. RANDOM DIFFERENTIAL INEQUALITIES 

In this section, we shall establish the result that will 
be widely useful in the qualitative analysis of random 
differential systems of the type (2.1). 

Theorem 3.1: Assume that 

(i)gELC[R+xR m , S(R m»), g(t,Il,w) is quasi monotone 
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nondecreasing in 11 for each fixed t E R., with probability 
1, and r(t, w) =c r(t, to, 110' w) be the maximal solution pro
cess of the system of random differential equations 
(2.2) existing for t> to; 

(ii) mE AC[R., S(R m )), and m(t, w) satisfies 

I/I'(t, w) "" r;(t, m(t, u), w) 

almost everywhere on (t, w) E R. x n. 
Then 

m(to,w)""uo(w) w.p. 1 

implies 

m(t, w) "" r(t, 10, uo, u), t? to W. p. 1. 

Proof: For any i E 1=c{l, 2,0", m}, we define the 
function 

gj(t, 11, w) = r;i(t, it, wi, 

where 11 E R m
, m(t, w) "" it, and for j E I 

{

IIi> if mAt, w) "" Uj , 

U j = 1n j (t), ifmj (t,w»lIj' 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

It is easy to observe that g(t, u, w) E LC[R.xRm
, S(R m

)] 

and satisfies the quasimonotone nondecreasing property 
in 11, for fixed t E R., w. p. 1. Let r(t, w) = r(t, to, uo, w) 
be the maximal solution of 

u'(/,w)=cg(t,u(t,w),w), u(to,w)=uo(w). (3.6) 

From (3.4) and (3.5), one can easily see that r(t, w) 
= r(t, wi, whenever 111(t, w) "" r(t, wi. In view of this, the 
validity of the inequality (3.3) is immediate, if we can 
show that 

m(t, w) "" r(t, wi, t?: to. (3.7) 

If (3.7) is false, there exists an index i E I, t1 and t2 with 
to < t1 < t2, and n1 en with p(n1) > a such that 

(a) IIIj(t1> w) =c r j(t1, wi, WE n1> 

(b) nlj(t,w»rj(t,w), IE (t1,t2) and WEn1, 

(c) mj(t,w)~rj(t,w), w.p. 1, tE[t1,t2) for alljEI. 

For almost every t E (t1' t2), and WE nb we obtain from 
(3.1) and (3.6) the inequality 

m;(t, w) - r;(t, w) "" {;j(t, m(t, wi, w) - gj(t, r(t, wi, wi. (3.8) 

From (3.4), (3.5), (a)-(c) and quasimonotone nonde
creasing property of g give 

m;(t, w) - r;(t, w) "" 0, 

which implies 

t E (t1, t 2) and w E n1. 

(3.9) 

Since m(t) E LC[R., S(R m
)], we have 

From (3.9), (3.10), (a), and (c), we have the 
contradiction 
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(3.10) 

which establishes the relation (3. 7). Thus the proof of 
the theorem is complete. 

Remark 3.1: Theorem 3.1 is analogous to determi
nistic Corollary 1. 7. 1 in Ref. 18. Furthermore, it is 
direct extension of the deterministic Theorem 1. 10. 118 

that is obtained in the context of differential inequalities 
of Caratheodory type. 

Remark 3.2: If, in Theorem 3.1, the inequalities 
(3. 1) and (3.2) are reversed, then the conclusion (3. 3) 
is to be replaced by 

m(t, w)? p(t, wi, t? to, 

where p(t, w) =p(t, to, Ito, w) is the minimal solution pro
cess of (2.2). 

4. COMPARISON THEOREMS 

In this section, we shall develop some results which 
furnish a very general comparison theorem for random 
differential systems. This is achieved by employing the 
system of random differential inequalities that are de
veloped in Sec. 3, and by introducing the concept of 
random vector Lyapunov function analogous to the earlier 
work. 13 These results play an important role not only 
in studying the qualitative behavior of (2.1), but also in 
studying the qualitative behavior of competitive process
es in biological, physical and social sciences. 

Let the function V E L[R. xD, S(R m
)], where 

L[R. xD, S(R m
)] stands for collection of random functions 

V(t, x, w) defined on R. XD x n into R m such that V(t, x, w) 
is locally Lipschitzian in (t, x) E R. xD w. p. 1. We de
fine a vector 

D'V(t, x, w) =c lim sup(l/h)[V(f + h, x + hj(t, x, wi, w) 
(2.1) h-O 

- V(t, x, w)] (4.1) 
for (t, x) E R.xD. Note that D'V(t, 0, w) is a product mea

(2.1 ) 

surable random vector in view of the assumptions on V. 

From here on, we shall assume that the function gin 
(2.2) and the function V satisfy the following hypothesis: 

(H1) gE LC[R.xRm
, S(R m

)], f(f, u, w) is quasimonotone 
nondecreasing in u, for fixed t E R., w. p. 1. 

(H2) Let r(t, fo, 110' w) = r(t, w) be the maximal solution 
process of the auxiliary random system (2.2) eXisting 
for I? to. 

(H3 ) Assume that f((t, 0, w) '" a almost everywhere 
(a. e.) on (t, w) E R.xn. 

(H4) VE L[R.xD, S(R m
)], V(t, x, w) is Lipschitzian in 

(t, x) E R. x D w. p. 1. Furthermore, for (t, x) E R. x D, 

D'V(t, x, w) "" {;(t, V(t, x, wi, wi, We p. 1. (4.2) 
(2.1 ) 

(H5) Assume that the hypotheses (H4 ) holds except that 
the inequality (4.2) is strengthened to 

A(t)D'V(t, x, w) + A' (t) V(t, x, w) 
(2.1 ) 

"" f(t, A(t)V(t, x, wi, wi, 

where D'V(t, x, w) is defined in (4.1). 
(2.1 ) 

Here A(t) = (ajj(t», ajj E L[R., S(R.)]; A -1(t) exists 
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w. p. 1; A-l (t)A'(t) is (t, w) measurable, and its off
diagonal elements are nonpositive w. p. 1, for t ~ o. 

(H6) For (t,x)ER.xD, 

b(lIxll) '" 6 Vi(t, x, w) '" a(t, Ilxll) 
i =1 

where b, a(t, .) EA. 

(H7) For (t,x)ER.xD, (4.4) holds with bE vA, 
a E eA. 

(4.4) 

(Hal In addition to the hypothesis (H6), we assume that 
a(t,r)=a(r). 

(Hg) Assume that (H7) holds with a(t, r) = a(r). 

We shall state and prove the following comparison 
theorem. 

Theorem 4.1: Let the hypotheses (HI), (H2), and (H4) 

be satisfied. Assume that for any sample solution pro
cess x(t, w) = x(t, to, x o, w) of (2.1) with X o E D(S(R n)) and 

v(to, xo(w), w) ~ llo(w). (4.5) 

Then 

v(t, x(t, w), w) ~ r(t, to, 1/0' w), (4.6) 

as long as x(t, w) E D(S(Rn)) for t ~ ta. 

Proof: Set 

111(1, w) = V(t, x(t, w), w), m(ta, w) = v(ta, xa(w), w). 

(4.7) 

Since x(t, w) is a sample solution of (2.1) and 
VE L[R.xD,S(Rm)], we conclude from the Rademacher's 
theorem2o that m(t, w) is sample absolutely continuous 
w.p. 1fort>to' For small 11>0, we have 

1II(t + Il, w) - 1I1(t, w) 

= V(t + h, x(t + h, w), w) - V(t, x(t, w), w) 

= V(t+ h,x(t+h,w),w)- V(t+h,x(t,w) 

+hf(t,x(t, w), w), w) + V(t +h,x(t, w) 

+ hf(t ,x(t, w),vJ), w) - V(t, x(t, w), w) 

'" Kllx(t + h, w) - x(t, w) - hf(t, x(t, w), w)11 

+ V(t +h,x(t, w) +hf(t,x(t, w), w), w) 

- V(t, x(t, w), w), 

where K is the local Lipschitz constant. This, together 
with (2.1), (4.2), and sample absolute continuity of 
m(t, w) yields the inequality 

m '(t, w) '" K(t, m{t, w), w) (4.8) 

almost everywhere on (t, w) E R. x st. From (4.5) and 
(4.7), m(to, w) ~ uo(w). Hence, by Theorem 3.1, we have 

m(t, w) '" r(t, tu, u u, w) 

as long as x(t, w) E D(S(Rn)) to the right of to. The proof 
is complete. 

The following variant of Theorem 4.1 is often made 
useful in applications. 

Theorem 4.2: Let the hypotheses of Theorem 4.1 hold 
except (H4 ) is replaced by (Hs). Then, V(ta, xo(w), w) 
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~ ua(w) implies 

V(t, x(t, w), w) '" R(t, ta, v o, w) (4.9) 

as long as x(t, w) E D(S(R")) where R(t, to, 1'0' w) is the 
maximal solution process of the auxiliary random dif
ferential system 

v'(t, w)=A-l (t)[-A'(t)v(t, w) +g(t,A(t)v(t, w), w)] 

(4.10) 

existing for t? to. 

Proof: Set W(t, x, w) =A(t)V(t, x, w). Because of (4.3), 
we have 

D+W(t, x, w) =A(t)D·V(t, x, w) +A'(t)V(t, x, w) 
(2.1) (2.1 ) 

~K(t, W(t;x, w), w). 

Now, by following the arguments used in Theorem 2.3 
in Ref. 13 and Theorem 4.1, the proof of the theorem 
can be constructed, analogously. 

Remark 4. 1: Note that the comparison theorems in 
Refs. 12-14 are developed for Ito type stochastic differ
ential systems. However, our present comparison theo
rems are for random differential systems in the context 
of random vector Lyapunov functions and systems of 
sample random differential inequalities. 

5. STABILITY RESULTS 

In this section, we employ the comparison theorems 
developed in the preceding section to study stability 
properties of the trivial solution of the random differ
ential system (2.1). 

The following result establishes the stability properties 
of (2. 1) in the sense of probability. 

Theorem 5.1: Let the hypotheses (HI), (H2), (H3), (H4 ), 

and (H6) be satisfied. Assume thatf(t, 0, w) '" O. Then, 

(i) (SPt) implies (SP t ), 

(ii) (SPt) implies (SP2). 

Proof: Let us prove the statement (i). Let 1)~' 0, 
o < E < p, and toE R+ be given. Assume that (SPt) holds. 
Then, b(E), 1)" 0 and tu E R., there exists a positive 
function 1\ = 61 (t a, E, 1)) such that 

p{w:E lti(t, ta, ua, w)? b(E)} < 1), t? to (5.1) 

provided 

P {w: t lliO(W)"> 61 }< 1). 
t=1 

(5.2) 

Let us choose ua= (Ul0, u20, ... , uma) so that V(ta, xo(w), w) 
~ ua(w) and 

m 

6 UiO(W) = a(ta, Ilx a(w) III for x a E D(S(R")) . 
i=1 

(5.3) 

Since a(t 0, .) E A, we can find a 6 = 6(t 0, E, 1)) such that 

p{w: a(to, Ilxa(w)II)"> 61}=p{w: Ilxa(w)II" 6}. (5.4) 

Now, we claim that (SP!) holds. Suppose that this claim 
is false. There would exist a solution process x(i, w) of 
(2.1) with p{w: Ilxa(w)11 "> 6} < 1) and a tl "> to such that 
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P{W: I/x(t17 w)1/ "" ~}= 1). (505) 

On the other hand, by Theorem 4. 1, the inequality 

V(t, x(t, w), w)"" r(t, to, uo, w) (5.6) 

is valid as long as x(t,w)ED(S(Rn». From (4.4) and 
(5.6), we have 

m 

b(l/x(t, w)II),,; ~ Vi(t, x(t, w), w) 

m 

,,; ~ r/(t, to, uo, w). (5.7) 
i,l 

The relations (5.1), (5.5), and (5.7) lead us to the 
contradiction 

1)=p{w: IIx(tl , w)II?~} 

=p{w: b(llx(tl , w)ID? b(~J} 

= p{w : t ri(t, to, lio, w) "" bed} < 1), 
.=1 

thus proving statement (i). 

To prove statement (ii), it is enough to prove that for 
any ~> 0, 1) > 0, and to E R. there exist positive numbers 
00= 0oUo) and T= T(to,~, 1) such that p{w: IIxo(w) II > 0o} 
< 1) implies 

(5.8) 

Assume that (Spn holds. Then given b(E) > 0, 11 > 0, 
and to E R., there exist numbers OOUo) = 00 and T(to, ~, 1) 

= T :> 0 such that 

p{w:~ Uj(t, to, lio, w)? b(~)}< 1), t"" t o+ T, (509) 

whenever 

p{w: ~ liiO(W) > 00} < 1). 
t.::l 

As before, we choose Uo so that (5.3) holds, and choose 
0o(to) = °0 :> ° such that 

p{w: a(to, Ilxo(w)l/) :> oD}=p{w: Ilxo(w)1/ :> oo}. 

We claim that (508) holds. Otherwise, there exists a 
sequence {t n}, tn?tO+T, f n - oo asn_CO such that for 
some solution process of (2.1) satisfying p{w: IIXo(WII 
> 0o} < 1), it will satisfy the relation 

p{w: Ilx(tm w)11 "" ~}= 1), t n ? to + T. 

This together with (5.7) and (5.9) will establish the vali
dity of (5. 8) 0 This completes the proof of the theorem. 

Remark 5.1: If we replace the hypothesis (Ha) in 
Theorem 501 by the weaker hypothesis, namely, 

(H~) inf(tvi(t,x,W»)=b(E), whenever~>O, 
t)O i=l 

then the conclusions of Theorem 5. 1 remain true. Under 
(Ht), the proof of Theorem 5.1 can be formulated anal
ogously, except for a few modifications. 

Remark 5.2: In the context of Remark 5.1, we note 
that the scalar version of Theorem 5.1 contains the re
sults in Ref. 10 as special cases, whenever fU, x, w) in 
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(2.1) is defined by f(t, x, w) = F(t, x) + a(t, x)y(t, wi, where 
FERn, aisakXnmatrix, andYEM[R+,S(R k

)] and it is 
sample continuous, and lIy(t)1I satisfies the law of large 
numbers. In fact, under the hypotheses of Theorem 2. 1 
in Ref. 10, we haveg(t,u,W)=(-cl +Lc2/1y(t)l/)u where 
C1' L, and Cz are defined in Ref. 10. Note that under 
the hypothesis on lIy (t) II , Ct, L, and C2, u'=g(t,u,w) 

is stable in probability. 

The following result establishes the stability prop
erties of- (2. 1) in the sense of first moment. 

Theorem 502: Assume that the hypotheses of the The
orem 5.1 holds except that (H6) is replaced by (H7). 

Then, 

(i) (SMt) implies (SM1), 

(ii) (SM~) implies (SM2). 

Proof: First, we prove (i). Let p > ~:> 0, to E R. be 
given. Assume that (SMt) holds. Then b(~) '- ° and 
to E R., there exists 01 = °1 (to, ~) such that 

m 

~ E[UiO(W)] "" 01 
i=l 

implies 
m 

.0 E[Ui(t, to, UO, W)j < b(~), t"" to. (5.10) 
i=l 

We choose Uo such that V(to, xo(w), w) "" uo(w) and 
m 

.0 E[UiO(W)] = a(to, E[IIxo(w) II]) for x o(w) ED. (5. 11) 
i=l 

Since a(to, 0) Ei<., we can find a 0= o(to,~) such that 

Now, we claim that if E[llxo(w)II] "" 0, then E[IIxU, w)lI] 
<~, t? to. Suppose that this is false. Then, there would 
exist a solution process x(t, to, x o) with E[ Ilx o(w) II] "" ° 
and a tl ~. to such that 

E[lIx(tl,w)II]=~ and E[IIx(t,w)II]""~, fE[to,t1]. 

(5.13) 

By following the proof of the Theorem 5.1, we have 
the inequality (5.7), and hence by the convexity of b, 
we have 

m 

b(E[IIx(t, w) II]) "".0 E[ Vi(t, x(t, w), w)] 
i=l 

m 

"" L; E[riU, to, uo, w)]. 
1=1 

(5.14) 

The relations (5.10), (5.13), and (5.14) lead to the 
contradiction 

m m 

b(~) "" Z E[V i (t1, X(t1, w), w)] ,,; [; E[r;(t1, tu, uo, w)] < b(E), 
i~ I~ 

proving (i). 

Based on the proof of (i) and the proof of (0 and the 
proof of Theorem 5.1, the proof of (ii) can be Similarly 
formulated. 

Remark 5.3: In the light of Remark 5.2 and p = 1, our 
Theorem 5.2 includes Theorems 2.2 and 3.2 in Ref. 10 
as special cases. 
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The following result establishes the stability property 
of (2. 1) in the sense of a probability one or almost sure 
sample. 

Theorem 5.3: Assume that the hypotheses of Theorem 
5.1 hold. Then, 

(i) (SS1') implies (SSl), 

(ii) (SS~) implies (8S 2). 

Proof: The proof of the theorem can be formulated by 
following the arguments used in proofs of Theorems 
5.1 and 5.2 and the deterministic version18 of the the
orem. We omit the details. 

Remark 5.4: Again in the light of Remark 5.2, our 
Theorem 5.3 includes Theorems 2.1 and 3.1 in Ref. 10, 
whenever the random processes Ily(t)1I in Remark 5.2 
satisfies the sharper law of large numbers, i. e. , 
limt_.,(l/t)Jtlly(s)llds = limt _",,(l/t)Jt E(lly(s)ll) ds w.p. 1. 

Under this condition, the trivial solution of the com
parison random differential equation u' = g(t, u, w) is 
asymptotically stable with probability one, where 
g(t, u, w) is as defined in Remark 5. 2. 

Remark 5.5: In general, we may not be able to find the 
auxiliary random differential system (2.2) whose trivial 
solution has (SP*), (SM*), and (SS*) properties. In such 
cases, the comparison Theorem 4.2 is useful in dis
cussing the stability properties of (2.1). Further detail 
discussion about the usefulness of Theorem 4.2 can be 
formulated by following the discussion about the use
fulness of the comparison Theorem 3.2 in Ref. 13 rel
ative to Ito type stochastic differential equations. 

Remark 5.6: Note that one could formulate the results 
corresponding to uniform notions under the hypotheses 
of the previous theorems except that (Ha) and (H7) are 
replaced by (Ha) and (H9), respectively, and the corre
sponding notions relative to auxiliary system (2.2) are 
uniform. 

Remark 5.7: We also note that our stability results 
are local in nature. If, on the other hand p = 00, then 
D = R", and the previous stability results would be of 
global character. 

6. EXAMPLES 

In this section, we give some examples in order to 
demonstrate the scope of our results. 

The following example shows that the use of the com
parison theorems and theory of differential inequalities 
is an alternative approach for the use of the variation 
of constants formula3 ,8 for studying the stability prop
erties of systems of random differential equations. 

Example 6.1: Consider the system of random differ
ential equations 

x' (t, w) = F(t, w)x(t, w), x(to, w) = xo(w), (6.1) 

where XE Rn, F(t, w) is an nXn random matrix function 
whose n column vectors belong to LC(R.,S(Rn)]. We 
further assume that 

(a) P {w : lim sup[ f !J.(F(s, w)) ds] < oo} = 1; 
t ... 00 0 
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(b) for some positive real number a, 

t ... 00 0 
p{w : lim sup[(l/tlj/ /.L(F(s, w)) ds 1"" - a}= 1, 

where !J.(F(t, w)) is the logarithmic norm for the random 
matrix function F(t, w) defined by 

/.l(F(t,w))=lim(1/h)[III+hF(t,w)II-1], w.p.1., 
h - O· 

(6.2) 

which is a direct analog of the logarithmic norm for 
deterministic matrices. 1a Further details about the log
arithmic norm of random matrices and its properties 
and scope, appears in Ref. 21. We further note that 
the value of /.l(F(t, w)) depends on the particular norm 
used for vector and matrices. However, in the following 
discussion, we use Ilx 111 = 2: ~=1 I Xl I and IIF(t, w) 11 

= supl2:7=1Ifik(t, w) I J. In this case, !J.(F(t, w)) is given 
by 

/.L(F(t, w)) = SUPk Ukk(t, w)+ t ifik(t, w) I J. 
i::l 
i~k 

This is analogous to the deterministic case. 16 

Takem=l, and V(t,X,w)=IIXll 1 • Forh>O, from 
(6.2), we obtain 

IIx + hF(t, w)xll "" III + hF(t, w)11 Ilxll 

(6.3) 

~ [h/.l(F(t, w)) + 1 + o(h) Jllx\\ (6.4) 

where o(h) /h - 0 as h -. 0·. From (6.4) and the definitions 

of V(t, x, w), D~6.1) vet, x, w), we have 

D~6.1) V(t, x, w) ~ /.L(F(t, w)) V(t, x, w). (6.5) 

The auxiliary or comparison random differential equa
tion is u'(t, w) = !J.(F(t, w)u(t, w). If (a) holds, then u= 0 
is stable with probability 1. On the other hand if (b) 
holds, then u= 0 is asymptotically stable with probability 
1. Thus, all the hypotheses of Theorem 5.3 are satisfied. 
Hence, relative to (6.1), the conclusion of Theorem 
5.3 remains true. 

Remark 6. 1: Note that one can state suitable condi
tions on !J.(F(t, w)) so that the other types of stability 
properties of (6.1) can be similarly derived. 

In the following, we discuss a simple example that 
shows that our approach is not only an alternative ap
proach over the variation of constants formula approach, 
but also shows certain gain over the earlier stability 
analysis. 3,10 

Example 602: Consider the special type of random dif
ferential system 

x'(t, w) =A(w)x +B(t, w)x, (6.6) 

wherexERn, IIA(w)II""Mw.p. 1, E[IIB(t,w)IIJ<oofor 
t E R., and the elements biJ(t, w) of the random matrix 
function B(t, w) = (bij(t, w)) are product measurable. 

We further assume that 

p{w: limsup[(1/t) itt !J.(A(w) + B(s, w))] "" - a}= 1, 
t - oc 0 

for a'- O. (607) 

As before, take V(t, x, w) = IIXII l and by following the 
argument in Example 6.1, we conclude that the trivial 
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solution of (6.6), asymptotically stable with probability 
one. 

In order to compare, the stability condition (6.7) with 
the earlier stability condition, 3,8 we use the property of 
logarithmic norm, /l(A(w) + B(t, w» ~ /l(A(w» 
+ /l(B(t, w». 21 In the light of this, the inequality (6.5) 
relative to (6.6) reduces to 

D+V(t, x, w) ~ [/l(A(w» + /l(B(t, w» ]V(t, x, w). (6.8) 
(6.6) 

Similarly, the stability condition (6.7) reduces to 

p{w: /l(A(w» + lim sup[(I/t) J/ /l(B(s, w» ds] ~ - a} = 1 
t .. 00 0 

for a> 0. (6.9) 

Again by using the property /l(B(t, w)IIB(t, w)lI, 21 if we 
further majorize (6.8), we get 

D+V(t, x, w) ~ [(.L(A(w» + IIB(t, w)ll]v(t, x, w). 
(6.6) 

In this case, the stability condition (6.9) becomes 

(6.10) 

p{w: /l(A(w» + lim sup[(I/t) j/ II B(s, w) lids] ~ - a} = 1. 
t .. 00 0 

(6.11) 

From (6.3), the stability conditions (6.7), (6.9), and 
(6. 11) are equivalent to 

p{w:lim inf[~lt inf[-(ajj(w)+bjj(s,w» 
t~~ t to j 

-t 1 aij(w) + biJ(s, w) 11 dSJ ? a}= 1, (6.12) 
1=1 
i~j 

P {w : inf [- (aJj(w)) - E 1 aiJ(w) 1 ] 

i=j 

+ lim inf [f ft inf (- (bjj(s, wi) 
t .. 00 to J 

-E 1 bij(S, w) l)dsJ? a}= 1, (6.13) 
i~J 

and 

p{w: inf [- (ajJ(w)) - E 1 aij(w) 1 ] 

itj 

- ;~~sup[~ l>B(S, w)II dSJ? a}= 1, (6.14) 

respectively. 

With respect to (6.6), if we further assume that the 
elements b1j(t, w) of the random matrix function B(t, w) 
are strictly stationary metrically transitive stochastic 
processes,22 then the stability conditions (6.12), (6.13), 
and (6. 14) reduce to 

P {w : - (ajj(w) + E[bjJ(O, w)]) 

-~E[lalj(w)+blJ(O,w)]1 ?a}=l,-

itj 

p{w: - (ajiw) +E[bjj(O, w)]) 

" " } - ~ la/j(w) 1 +?2 E [lb1j(0,w)IJ?a =1, 

I~j i~j 
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(6.15) 

(6.16) 

and 

p{w: - (ajj(w) + E[bjJ(O, w)]) 

-[ E 1 aij(w) 1 +E[IIB(O, W)IIJ]? a}= 1, 

j~1 

(6.17) 

respectively. We note that the stability condition (6.17) 
implies 

P{w:ajj(w)<O}=l and P u.':lajj(w)I-Llaij(w)l?a =1, 
i=l 
i"i:j 

and hence p{w: /l(A(w» ~ - a}. This together with the 
property that Re>"(w) ~ /l(A(w» for any eigenvalue >..(w) 
of A(w) yields 

P w: max Re>..(w) < - a = 1. (6.18) 

From (6.18), the random matrix A(w) is P-stable. 3,8 

This shows ·that the stability condition (6. 17) is stronger 
than the P-stability of A(wL Recently, 3,8 by assuming 
the P-stability of A(w) and measurability, strictly sta
tionary metrically transitive property of the coefficients 
of random matrix B(t, wi, the stability of the trivial solu
tion is established, whenever E[II B(O, w) II] is sufficiently 
small. Now, by comparing the different set of the sta
bility conditions (6.15), (6.16), and (6.17), one can im
mediately conclude that our approach is certainly more 
advantageous over the earlier approach. 3,6,8 Further
more, the particular stability condition (6.16) that is 
more restrictive than (6.15), shows that the matrix 
A(w) may not be P-stable. From (6.16), we can conclude 
that the trivial solution of (6.6) is asymptotically stable 
with probability one, if at least one of the matrices A(w) 
and E[B(O, w)] is P-stable, and the matrices A(w), 
E[B(O, w) J satisfy the relation (6. 16). This shows an 
important gain over the earlier approach. 

In the following, we shall make further remarks which 
are important by-products of our above discussion. 

Remark 6.2: We note that the special type of random 
differential system (6.6) is not a very restrictive as
sumption. In fact, the differential system (6.1) can be 
rewritten as (6.6) whenever E[F(t, w)] exists. For in
stance, we set 

A(t) = E[F(t, w)] and H(t, w) = F(t, w) - E[F(t, w)]. 

Then, the system (6.1) can be rewritten as 

x'(t, w) =A(t)x + B(t, w)x. (6.19) 

Now, one can formulate the stability conditions for 
(6.19) analogous to the stability conditions of (6.6). For 
details, see Ref. 21. 

Remark 6.3: We also note that in the case of white 
noise coefficients, 3,13,16 the randomness is a destabiliz
ing agent, however, in the case of nonwhite coefficients 
such as strictly stationary metrically transitive random 
coefficients, the randomness may be a stabilizing agent. 
This remark can be justified from (6.15) and (6.16). 
Further note that this observation confirms the Note 
3. 2 made by Khas' minskii. 10 

In the following, we give an example to illustrate the 
comparison principle relative to the system (2.1). 
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Example 6.3: Suppose that (2.1) satisfies 

Ilxi + hfi(t, x, w)11 

'" Ilxili + h (23 aij(t, w)IIXjll), i = 1,2, ... , m, 
J =1 

for (t, x) E R. xD, sufficiently small h > 0, where 
m 

(6.20) 

XiER"i, n=Bni' aijELC[R.,S(R)], aij",Ofori"*j' 
i=l 

Take 

where Vi(t, x) = Ilxi II, i = 1,2, ... , m. Note that 
m 

b(llxll) '" B Vi(t, x) '" a(llxll), 
i =1 

where b(llxll)= Ilxll, a(llxll) =..fm IIxll. 

From (6.20) we have the vectorial inequality 

D'V(t, x, w) '" g(t, V(t, x, w», 
(2.1 ) 

where 

g(t, ii, w) =A(t, w)u. 

It is obvious that K(t, u, w) E LC[R.xRm,S(Rm)] and 

(6.21) 

(6.22) 

gU, u, w) satisfies the quasi monotone nondecreasing 
property in u for fixed t E R •. Assume that the trivial 
solution of (2.2) is uniformly stable in probability. Thus 
all the hypotheses of Theorem 5.1 and Remark 5.6 are 
satisfied. Hence, we conclude that the trivial solution 
of the system (2.1) is uniformly stable in probability. 
Note that one can draw similar conclusions with respect 
to the stability in the mean and the stability with pro
bability one in the context of Theorems 5.2 and 5.3 
together with Remark 5. 6, analogously. 

Remark 6.5: In order to show an advantage of a vector 
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Lyapunov function over a single Lyapunov function, an 
example similar to the Example 5.3 in Ref. 13 can be 
analogously constructed. To avoid monotonicity, we do 
not want to discuss further details. 

*The research reported herein was supported by the SUNY Re
search Foundation Faculty Fellowship. 
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ERRATA 

Erratum: Clebsch-Gordan coefficients for crystal space 
groups [J. Math. Phys. 16, 227 (1975)] 

Rhoda Berenson and Joseph L. Birman 

Department of Physics, City College, C. U.N. Y., New York, New York 10031 
(Received 4 August 1976) 

It has been pointed 'out to us that due to our use of 
condensed notation, certain of the equations could be 
misread. In order to avoid this possibility we give bll
low some equations, including expanded notation. 

(1) Equation (3.8) can be clarified by writing 

1 1m 

p (/) IJI';;, = -w-- :6 ffm( ¢ a-I ¢, ¢T)"~ IJI~ 
a 0',0'-1 ~:::1 

(2) Equation (5.15) states 

w k =1 a,a-1 

w1~ 1~1{0 IT 1-1=1. 
""Q ex' 0/ a 

It is not to be read as 

Thus what appears in Eq. (5.16) is 

D({¢a I Tat{¢, I T'}{¢T ITT}) 

and not 

This is to be read (in expanded notation) as 
We thank Professor R. Dirl for suggesting that we 

clarify our notation. 

Erratum: Optimal factor group for nonsymmorphic space 
groups [J. Math. Phys. 17, 1051 (1976)] 

R. Car, G. Ciucci, and L. Quartapelle 

Istitutu di Fisica, Politecnico di Milano, 20133 Milano, Italy 
(Received 2 August 1976) 

In Table I, p. 1054, some group operations are not 
in the right place. The correct Table I should read as 
follows on the right. The relation R;j R2R3 = R4 in the 
first column of p. 1054 must be replaced by R-:/R2R3 

= tR2• In the first row of Table III the right values of 
D j (R3)12 and D j (R4)j2 are respectively D j (R 3)j2 == 1 and 
D j (R4)j2 == - 1. 

TABLE 1. Multiplication table of QD' 

RI R2 

RI RI R2 

R2 Rz RI 

R3 R3 R4 

R4 R4 R3 

R3 

R3 

tR, 

RI 

tR2 
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R4 

R4 

tR3 

R2 
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